Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
Article Number 8
Number of page(s) 7
DOI https://doi.org/10.1186/s41476-018-0077-9
Published online 12 March 2018
  1. Palmer C, Loewen E, Diffraction Grating Handbook (2005) New YorkNewport Corporation [Google Scholar]
  2. Harrison GR, The production of diffraction gratings: II. The design of echelle gratings and spectrographs. J. Opt. Soc. Am. (1949) 39, 7522–527. https://doi.org/10.1364/JOSA.39.000522 [NASA ADS] [CrossRef] [Google Scholar]
  3. Dantzler AA, Echelle spectrograph software design aid. Appl. Opt. (1985) 24, 244504–4508. https://doi.org/10.1364/AO.24.004504 [NASA ADS] [CrossRef] [Google Scholar]
  4. Dantzler AA, Echelle grism spectrograph. Appl. Opt. (1986) 25, 234267–4287. [NASA ADS] [Google Scholar]
  5. Cash W, Echelle spectrographs at grazing incidence. Appl. Opt. (1982) 21, 4710–717. https://doi.org/10.1364/AO.21.000710 [NASA ADS] [CrossRef] [Google Scholar]
  6. Cornet P, Chandezon J, Faure C, Conical diffraction of a plane wave by an inclined parallel-plate grating. J. Opt. Soc. Am. A. (1997) 14, 2437–449. https://doi.org/10.1364/JOSAA.14.000437 [NASA ADS] [CrossRef] [Google Scholar]
  7. Goray LI, Schmidt G, Solving conical diffraction grating problems with integral equations. J. Opt. Soc. Am. A. (2010) 27, 3585–597. https://doi.org/10.1364/JOSAA.27.000585 [NASA ADS] [CrossRef] [Google Scholar]
  8. Werner W, X-ray and extended UV spectrometer designs based on off-plane grating mountings. Space Sci. Rev. (1981) 29, 4455–459. https://doi.org/10.1007/BF00239492 [CrossRef] [Google Scholar]
  9. Werner W, Comparison of various grazing incidence spectrometer designs based on conical diffraction. Appl. Opt. (1984) 23, 142408–2411. https://doi.org/10.1364/AO.23.002408 [NASA ADS] [CrossRef] [Google Scholar]
  10. Lemaire P, Ultraviolet conical diffraction: a near-stigmatic tandem grating mounting spectrometer. Appl. Opt. (1991) 30, 101294–1302. https://doi.org/10.1364/AO.30.001294 [NASA ADS] [CrossRef] [Google Scholar]
  11. Everett, M.J., Zhou, Y., Horn, J.M.M., O’Hara, K., Foley, J.P.: Littrow spectrometer and a spectral domain optical coherence tomography system with a Littrow spectrometer. US patent 7456957 B2, United States (2008) [Google Scholar]
  12. Yang Q, Compact high-resolution Littrow conical diffraction spectrometer. Appl. Opt. (2016) 55, 184801–4807. https://doi.org/10.1364/AO.55.004801 [NASA ADS] [CrossRef] [Google Scholar]
  13. Ballester P, Rosa MR, Modeling echelle spectrographs. Astron. Astrophys. Suppl. Ser. (1997) 126, 3563–571. https://doi.org/10.1051/aas:1997283 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. Ge J, Angel JRP, Jacobsen B, Woolf N, Fugate RQ, Black JH, Lloyd-Hart M, An optical ultra-high-resolution cross-dispersed echelle spectrograph with adaptive optics. Publ. Astron. Soc. Pac. (2002) 114, 798879–891. https://doi.org/10.1086/341711 [NASA ADS] [CrossRef] [Google Scholar]
  15. Yin L, BayanheshigYang J, Lu Y, Zhang R, Sun C, Cui J, High-accuracy spectral reduction algorithm for the échelle spectrometer. Appl. Opt. (2016) 55, 133574–3581. https://doi.org/10.1364/AO.55.003574 [NASA ADS] [CrossRef] [Google Scholar]
  16. Yang J, Ding Y, Zhang W, Zhang J, Zheng Z, Precise measurement technology of soft-x-ray spectrum using dual transmission grating spectrometer. Rev. Sci. Instrum. (2003) 74, 104268–4272. https://doi.org/10.1063/1.1611996 [NASA ADS] [CrossRef] [Google Scholar]
  17. Weisberg A, Craparo J, De Saro R, Pawluczyk R, Comparison of a transmission grating spectrometer to a reflective grating spectrometer for standoff laser-induced breakdown spectroscopy measurements. Appl. Opt. (2010) 49, 13C200–C210. https://doi.org/10.1364/AO.49.00C200 [NASA ADS] [CrossRef] [Google Scholar]
  18. Wang C, Ding Z, Mei S, Yu H, Hong W, Yan Y, Shen W, Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography. Opt. Lett. (2012) 37, 214555–4557. https://doi.org/10.1364/OL.37.004555 [NASA ADS] [CrossRef] [Google Scholar]
  19. Bao W, Ding Z, Li P, Chen Z, Shen Y, Wang C, Orthogonal dispersive spectral-domain optical coherence tomography. Opt. Express (2014) 22, 810081–10090. https://doi.org/10.1364/OE.22.010081 [CrossRef] [Google Scholar]
  20. Xu K, Integrated silicon directly modulated light source using p-well in standard CMOS technology. IEEE Sensors J. (2016) 16, 166184–6191. https://doi.org/10.1109/JSEN.2016.2582840 [NASA ADS] [CrossRef] [Google Scholar]
  21. Xu K, Li GP, A novel way to improve the quantum efficiency of silicon light-emitting diode in a standard silicon complementary metal–oxide–semiconductor technology. J. Appl. Phys. (2013) 113, 10103106. https://doi.org/10.1063/1.4795170 [CrossRef] [Google Scholar]
  22. Schroeder DJ, Astronomical optics (1987) San DiegoAcademic [Google Scholar]
  23. Bass M, Li G, Stryland EV, Handbook of Optics (2010) New YorkMcGraw-Hill [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.