Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
Article Number 9
Number of page(s) 11
DOI https://doi.org/10.1186/s41476-018-0078-8
Published online 16 March 2018
  1. Titterton, D., Weston, JL: Strapdown inertial navigation technology, vol. 17. IET (2004) [Google Scholar]
  2. Wertz, JR (ed.): Spacecraft attitude determination and control, vol. 73. Springer Science & Business Media (2012) [Google Scholar]
  3. Liebe CC, Star trackers for attitude determination. IEEE Aerosp. Electron. Syst. Mag. (1995) 10, 610–16. https://doi.org/10.1109/62.387971 [CrossRef] [Google Scholar]
  4. Kawano H, Shimoji H, Yoshikawa S, Miyatake K, Hama K, Nakamura S, Optical testing of star sensor (I): defocus spot measuring technique for ground-based test. Opt. Rev. (2008) 15, 2110–117. https://doi.org/10.1007/s10043-008-0016-x [NASA ADS] [CrossRef] [Google Scholar]
  5. Wang G, Xing F, Wei M, Sun T, You Z, Optimization method for star tracker orientation in the sun-pointing mode. Chin. Opt. Lett. (2017) 15, 8081201. https://doi.org/10.3788/COL201715.081201 [NASA ADS] [CrossRef] [Google Scholar]
  6. Zhao S, Wang Y, Wang H, Study on detection sensitivity of missile-borne star tracker (2012) [Google Scholar]
  7. Hua-Ming, Q., Hao, L., Hai-Yong, W.: Design and verification of star-map simulation software based on CCD star tracker. In: Intelligent Computation Technology and Automation (ICICTA), 2015 8th International Conference on, pp. 383–387. IEEE (2015) [Google Scholar]
  8. Wang, S., Geng, Y.: Large field and high precision optical system for star tracker. In: Information and Automation (ICIA), 2014 IEEE International Conference on, pp. 484–489. IEEE (2014) [Google Scholar]
  9. Zhang P, Zhao Q, Liu J, Liu N, A brightness-referenced star identification algorithm for aps star trackers. Sensors (2014) 14, 1018498–18514. https://doi.org/10.3390/s141018498 [NASA ADS] [CrossRef] [Google Scholar]
  10. Birnbaum MM, Spacecraft attitude control using star field trackers. Acta Astronautica (1996) 39, 9–12763–773. https://doi.org/10.1016/S0094-5765(97)00060-X [NASA ADS] [CrossRef] [Google Scholar]
  11. Huffman, K, Sedwick, R, Stafford, J, Peverill, J, Seng, W: Designing star trackers to meet micro-satellite requirements. InSpaceOps 2006 Conference, p. 5654, (2006) [Google Scholar]
  12. Liebe CC, Gromov K, Meller DM, Toward a stellar gyroscope for spacecraft attitude determination. J. Guid. Control. Dyn. (2004) 27, 191–99. https://doi.org/10.2514/1.9289 [NASA ADS] [CrossRef] [Google Scholar]
  13. Eisenman AR, Liebe CC, Jorgensen JL, The new generation of autonomous star trackers (1997) [Google Scholar]
  14. Mazy E, Defise J-M, Plesseria J, De Vos L, Optical Design of the INTEGRAL Optical Monitoring Camera. Proc. SPIE (1998) [Google Scholar]
  15. Mazy E, Defise J-M, Plesseria J, INTEGRAL Optical Monitoring Camera Stray-Light Design. SPIE Conference (1998) [Google Scholar]
  16. Scaduto, L.C., Carvalho, E.G., Santos, L.F., Yasuoka, F.M., Stefani, M.A., Castro, J.C.: Baffle Design and Analysis of Stray-Light in Multispectral Camera of a Brazilian Satellite. Annals of Optics, XXIX ENFMC (2006) [Google Scholar]
  17. Lee YS, Kim YH, Yi Y, Kim J, A baffle design for an airglow photometer onboard the Korea sounding rocket-iii. J Korean Astronomical Soc (2000) 33, 165–172. [NASA ADS] [Google Scholar]
  18. Yadid-Pecht O, Clark C, Pain B, Staller C, Fossum ER, Wide dynamic range APS star tracker. Proc. SPIE (1996) 82–92. [Google Scholar]
  19. Boldrini F, Monnini E, Procopio D, Applications of APS detector to GNC sensors. Eur Space Agency-Publications-Esa Sp (2003) 516, 33–40. [NASA ADS] [Google Scholar]
  20. Hopkinson G, Purll D, Abbey A, Short A, Watson D, Wells A, Active pixel array devices in space missions. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2003) 513, 1327–331. https://doi.org/10.1016/j.nima.2003.08.057 [NASA ADS] [CrossRef] [Google Scholar]
  21. Uwaerts D, STAR 1000 Detailed Specification. fillfactory (2006) [Google Scholar]
  22. Samaan MA, Toward Faster and More Accurate Star Tracker Sensor Using Recursive Centroding and Star Identification. Texas A&M University. A Dissertation Proposal (2002) [Google Scholar]
  23. Warren JS. Modern optical engineering. The Design of Optical Systems. 2007:205–216. [Google Scholar]
  24. Fischer RE, Tadic-Galeb B, Yoder PR, Galeb R, Optical System Design (2000) New YorkMcGraw Hill [Google Scholar]
  25. Park J-O, Jang W-K, Kim S-H, Jang H-S, Lee S-H, Stray light analysis of high resolution camera for a low-earth-orbit satellite. J Opt Soc Korea (2011) 15, 152–55. https://doi.org/10.3807/JOSK.2011.15.1.052 [CrossRef] [Google Scholar]
  26. JI, R.S.J.Z.Y., Weimin, S.: Stray Light Analysis and Baffle Design of Remote Sensing Camera for Microsatellite. In: Proc. of SPIE Vol, pp. 75060T–775061, In (2009) [Google Scholar]
  27. Fest EC, Engineers, S.o.P.-o.I.: Stray light analysis and control (2013) BellinghamSPIE Press [CrossRef] [Google Scholar]
  28. Park J-O, Jang W-K, Kim S-H, Jang H-S, Lee S-H, Optical noise removal in the focal plane of the Spaceborne camera. J Opt Soc Korea (2011) 15, 3278–282. https://doi.org/10.3807/JOSK.2011.15.3.278 [CrossRef] [Google Scholar]
  29. Du B, Li L, Huang Y, Stray light analysis of an on-axis three-reflection space optical system. Chin. Opt. Lett. (2010) 8, 6569–572. https://doi.org/10.3788/COL20100806.0569 [CrossRef] [Google Scholar]
  30. Kumar MS, Narayanamurthy C, Kumar AK, Design and analysis of optimum baffle for a Cassegrain telescope. J. Opt. (2016) 45, 2180–185. https://doi.org/10.1007/s12596-015-0296-z [CrossRef] [Google Scholar]
  31. Hu X, Wang W, Hu Q, Lei X, Wei Q, Liu Y, Wang J, Design of CASSEGRAIN telescope baffles with honeycomb entrance. Chin. Opt. Lett. (2014) 12, 7072901. https://doi.org/10.3788/COL201412.072901 [NASA ADS] [CrossRef] [Google Scholar]
  32. Nejad SM, Madineh AB, Nasiri M, Baffle design and evaluation of the effect of different parameters on its performance. Optik-Int J Light Electron Opt (2013) 124, 236480–6484. https://doi.org/10.1016/j.ijleo.2013.05.123 [CrossRef] [Google Scholar]
  33. Cascioli V, Borsini S, Gargiulo C, Trampus P, Bucconi A, Scarabottini P, Scolieri G, Molina M, Vettore C, The AMS star tracker thermal qualification overview. SAE Technical Paper (2007) [Google Scholar]
  34. Cannata M, Greene M, Mulligann J, Popovici V, Quine B, Arjomandi E, Autonomous Star Imaging Attitude Sensor (2007) TorontoYork University [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.