Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
Article Number 7
Number of page(s) 11
Published online 21 February 2018
  1. Denk W, Piston DW, Webb WW, Pawley BJ, Multi-photon molecular excitation in laser-scanning microscopy. Handbook of Biological Confocal Microscopy (2006) BostonSpringer535–549. [CrossRef] [Google Scholar]
  2. Booth MJ, Adaptive optics in microscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2007) 365, 2829. [NASA ADS] [CrossRef] [Google Scholar]
  3. Booth MJ, Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl. (2014) 3, e165. [NASA ADS] [CrossRef] [Google Scholar]
  4. Ji N, Adaptive optical fluorescence microscopy. Nat. Meth. (2017) 14, 374–380. [Google Scholar]
  5. Vellekoop IM, Feedback-based wavefront shaping. Opt. Express (2015) 23, 12189–12206. [NASA ADS] [CrossRef] [Google Scholar]
  6. Vellekoop IM, Mosk AP, Focusing coherent light through opaque strongly scattering media. Opt. Lett. (2007) 32, 2309–2311. [NASA ADS] [CrossRef] [Google Scholar]
  7. Mosk AP, Lagendijk A, Lerosey G, Fink M, Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. (2012) 6, 283–292. [NASA ADS] [CrossRef] [Google Scholar]
  8. Katz O, Small E, Silberberg Y, Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photon. (2012) 6, 549–553. [CrossRef] [Google Scholar]
  9. Ghielmetti G, Aegerter CM, Scattered light fluorescence microscopy in three dimensions. Opt. Express (2012) 20, 3744–3752. [CrossRef] [Google Scholar]
  10. Ghielmetti G, Aegerter CM, Direct imaging of fluorescent structures behind turbid layers. Opt. Express (2014) 22, 1981–1989. [CrossRef] [Google Scholar]
  11. Malavalli A, Ackermann M, Aegerter CM, Structured illumination behind turbid media. Opt. Express (2016) 24, 23018–23026. [NASA ADS] [CrossRef] [Google Scholar]
  12. Vellekoop IM, Aegerter CM, Focusing light through living tissue. Proc. SPIE (2010) 7554, 755430. [Google Scholar]
  13. Dalgarno HIC, Čižmár T, Vettenburg T, Nylk J, Gunn-Moore FJ, Dholakia K, Wavefront corrected light sheet microscopy in turbid media. Appl. Phys. Lett. (2012) 100, 191108. [NASA ADS] [CrossRef] [Google Scholar]
  14. Horstmeyer R, Ruan H, Yang C, Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. (2015) 9, 563–571. [CrossRef] [Google Scholar]
  15. Tang J, Germain RN, Cui M, Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl. Acad. Sci. (2012) 109, 8434–8439. [Google Scholar]
  16. Katz O, Heidmann P, Fink M, Gigan S, Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photon. (2014) 8, 784–790. [CrossRef] [Google Scholar]
  17. Bertolotti J, van Putten EG, Blum C, Lagendijk A, Vos WL, Mosk AP, Non-invasive imaging through opaque scattering layers. Nature (2012) 491, 232–234. [NASA ADS] [CrossRef] [Google Scholar]
  18. Yilmaz H, van Putten EG, Bertolotti J, Lagendijk A, Vos WL, Mosk AP, Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica (2015) 2, 424–429. [NASA ADS] [CrossRef] [Google Scholar]
  19. Lerosey G, de Rosny J, Tourin A, Fink M, Focusing beyond the diffraction limit with far-field time reversal. Science (2007) 315, 1120. [NASA ADS] [CrossRef] [Google Scholar]
  20. Cui M, McDowell EJ, Yang C, An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear. Opt. Express (2010) 18, 25–30. [CrossRef] [Google Scholar]
  21. Yaqoob Z, Psaltis D, Feld MS, Yang C, Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon. (2008) 2, 110–115. [NASA ADS] [CrossRef] [Google Scholar]
  22. Lai P, Xu X, Liu H, Wang LV, Time-reversed ultrasonically encoded optical focusing in biological tissue. J. Biomed. Opt. (2012) 17, 030506. [NASA ADS] [CrossRef] [Google Scholar]
  23. Liu Y, Lai P, Ma C, Xu X, Grabar AA, Wang LV, Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nat. Commun. (2015) 6, 5904. [NASA ADS] [CrossRef] [Google Scholar]
  24. Xu X, Liu H, Wang LV, Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photonics (2011) 5, 154–154. [NASA ADS] [CrossRef] [Google Scholar]
  25. Judkewitz B, Wang YM, Horstmeyer R, Mathy A, Yang C, Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nat. Photon. (2013) 7, 300–305. [CrossRef] [Google Scholar]
  26. Zhou EH, Ruan H, Yang C, Judkewitz B, Focusing on moving targets through scattering samples. Optica (2014) 1, 227–232. [NASA ADS] [CrossRef] [Google Scholar]
  27. Wang D, Zhou EH, Brake J, Ruan H, Jang M, Yang C, Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica (2015) 2, 728–735. [NASA ADS] [CrossRef] [Google Scholar]
  28. Wang K, Sun W, Richie CT, Harvey BK, Betzig E, Ji N, Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. (2015) 6, 7276. [CrossRef] [Google Scholar]
  29. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK, Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science (2004) 305, 1007. [CrossRef] [Google Scholar]
  30. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK, Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science (2008) 322, 1065. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  31. Editorial: method of the year 2014. Nat. Meth. 12, 1 (2015). [Google Scholar]
  32. The MathWorks Documentation. Last access 10 Jan 2018 [Google Scholar]
  33. Dainty JC, Laser Speckle and Related Phenomena (1975) Berlin HeidelbergSpringer-Verlag [Google Scholar]
  34. Bainbridge SP, Bownes M, Staging the metamorphosis of Drosophila Melanogaster. J. Embryol. Exp. Morphol. (1981) 66, 57. [Google Scholar]
  35. Osnabrugge G, Horstmeyer R, Papadopoulos IN, Judkewitz B, Vellekoop IM, Generalized optical memory effect. Optica (2017) 4, 8886–892. [NASA ADS] [CrossRef] [Google Scholar]
  36. Vellekoop IM, Aegerter CM, Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. (2010) 35, 1245–1247. [CrossRef] [Google Scholar]
  37. Bourgenot C, Saunter CD, Taylor JM, Girkin JM, Love GD, 3D adaptive optics in a light sheet microscope. Opt. Express (2012) 20, 13252–13261. [NASA ADS] [CrossRef] [Google Scholar]
  38. Wright AJ, Burns D, Patterson BA, Poland SP, Valentine GJ, Girkin JM, Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy. Microsc. Res. Tech. (2005) 67, 36–44. [Google Scholar]
  39. Cui M, A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media. Opt. Express (2011) 19, 2989–2995. [CrossRef] [Google Scholar]
  40. Kong L, Cui M, In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique. Opt. Express (2014) 22, 23786–23794. [NASA ADS] [CrossRef] [Google Scholar]
  41. Nixon M, Katz O, Small E, Bromberg Y, Friesem AA, Silberberg Y, Davidson N, Real-time wavefront shaping through scattering media by all-optical feedback. Nat. Photon. (2013) 7, 919–924. [NASA ADS] [CrossRef] [Google Scholar]
  42. Edrei E, Scarcelli G, Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect. Optica (2016) 3, 71–74. [NASA ADS] [CrossRef] [Google Scholar]
  43. N’Gom M, Lien M, Estakhri NM, Norris TB, Michielssen E, Nadakuditi RR, Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method. Sci. Rep. (2017) 7, 2518. [CrossRef] [Google Scholar]
  44. Durán V, Soldevila F, Irles E, Clemente P, Tajahuerce E, Andrés P, Lancis J, Imaging at depth in tissue with a single-pixel camera. arXiv (2014) 1411, 2731. [Google Scholar]
  45. Tajahuerce E, Durán V, Clemente P, Irles E, Soldevila F, Andrés P, Lancis J, Image transmission through dynamic scattering media by single-pixel photodetection. Opt. Express (2014) 22, 16945–16955. [NASA ADS] [CrossRef] [Google Scholar]
  46. Fiolka R, Si K, Cui M, Complex wavefront corrections for deep tissue focusing using low coherence backscattered light. Opt. Express (2012) 20, 16532–16543. [NASA ADS] [CrossRef] [Google Scholar]
  47. Yu H, Lee P, Lee K, Jang J, Lim J, Jang W, Jeong Y, Park Y, In vivo deep tissue imaging using wavefront shaping optical coherence tomography. J. Biomed. Opt. (2016) 21, 101406. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.