Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 36
Number of page(s) 5
DOI https://doi.org/10.1186/s41476-017-0061-9
Published online 17 November 2017
  1. Brosseau C, Fundamentals of Polarized Light: A Statistical Optics Approach (1998) New YorkWiley [Google Scholar]
  2. Gil JJ, Ossikovski R, Polarized Light and the Mueller Matrix Approach (2016) Boca RatonCRC Press [Google Scholar]
  3. Setälä T, Kaivola M, Friberg AT, Degree of polarization in near fields of thermal sources: effects of surface waves. Phys. Rev. Lett (2002) 88, 123902. https://doi.org/10.1103/PhysRevLett.88.123902 [CrossRef] [Google Scholar]
  4. Norrman A, Setälä T, Friberg AT, Partial spatial coherence and partial polarization in random evanescent fields on lossless interfaces. J. Opt. Soc. Am. A (2011) 28, 391–400. https://doi.org/10.1364/JOSAA.28.000391 [NASA ADS] [CrossRef] [Google Scholar]
  5. Norrman A, Setälä T, Friberg AT, Generation and electromagnetic coherence of unpolarized three-component light fields. Opt. Lett (2015) 40, 5216–5219. https://doi.org/10.1364/OL.40.005216 [NASA ADS] [CrossRef] [Google Scholar]
  6. Lindfors K, Setälä T, Kaivola M, Friberg AT, Degree of polarization in tightly focused optical fields. J. Opt. Soc. Am. A (2005) 22, 561–568. https://doi.org/10.1364/JOSAA.22.000561 [NASA ADS] [CrossRef] [Google Scholar]
  7. Lindfors K, Priimagi A, Setälä T, Shevchenko A, Friberg AT, Kaivola M, Local polarization of tightly focused unpolarized light. Nat. Photon (2007) 1, 228–231. https://doi.org/10.1038/nphoton.2007.30 [CrossRef] [Google Scholar]
  8. Bauer T, Banzer P, Karimi E, Orlov S, Rubano A, Marrucci L, Santamato E, Boyd RW, Leuchs G, Observation of optical polarization Möbius strips. Science (2015) 347, 964–966. https://doi.org/10.1126/science.1260635 [CrossRef] [PubMed] [Google Scholar]
  9. Bauer T, Neugebauer M, Leuchs G, Banzer P, Optical polarization Möbius strips and points of purely transverse spin density. Phys. Rev. Lett (2016) 117, 013601. https://doi.org/10.1103/PhysRevLett.117.013601 [CrossRef] [Google Scholar]
  10. Leppänen L-P, Friberg AT, Setälä T, Partial polarization of optical beams and near fields probed with a nanoscatterer. J. Opt. Soc. Am. A (2014) 31, 1627–1635. https://doi.org/10.1364/JOSAA.31.001627 [CrossRef] [Google Scholar]
  11. Novotny L, Beversluis MR, Youngworth KS, Brown TG, Longitudinal field modes probed by single molecules. Phys. Rev. Lett (2001) 86, 5251–5254. https://doi.org/10.1103/PhysRevLett.86.5251 [CrossRef] [Google Scholar]
  12. Dholakia K, Čižmár T, Shaping the future of manipulation. Nat. Photon (2011) 5, 335–342. https://doi.org/10.1038/nphoton.2011.80 [CrossRef] [Google Scholar]
  13. Tervo J, Setälä T, Friberg AT, Theory of partially coherent electromagnetic fields in the space–frequency domain. J. Opt. Soc. Am. A (2004) 21, 2205–2215. https://doi.org/10.1364/JOSAA.21.002205 [NASA ADS] [CrossRef] [Google Scholar]
  14. Voipio T, Setälä T, Friberg AT, Partial polarization theory of pulsed optical beams. J. Opt. Soc. Am. A (2013) 30, 71–81. https://doi.org/10.1364/JOSAA.30.000071 [NASA ADS] [CrossRef] [Google Scholar]
  15. Mandel L, Wolf E, Optical Coherence and Quantum Optics (1995) CambridgeCambridge University Presshttps://doi.org/10.1017/CBO9781139644105 [CrossRef] [Google Scholar]
  16. Dennis MR, Geometric interpretation of the three-dimensional coherence matrix for nonparaxial polarization. J. Opt. A: Pure Appl. Opt (2004) 6, S26–S31. https://doi.org/10.1088/1464-4258/6/3/005 [NASA ADS] [CrossRef] [Google Scholar]
  17. Gil JJ, Interpretation of the coherency matrix for three-dimensional polarization states. Phys. Rev. A (2014) 90, 043858. https://doi.org/10.1103/PhysRevA.90.043858 [NASA ADS] [CrossRef] [Google Scholar]
  18. Gil JJ, Intrinsic Stokes parameters for 3D and 2D polarization states. J. Eur. Opt. Soc.-Rapid (2015) 10, 15054. https://doi.org/10.2971/jeos.2015.15054 [NASA ADS] [CrossRef] [Google Scholar]
  19. Horn RA, Johnson CR, Matrix Analysis. 2nd edition (1985) CambridgeCambridge University Presshttps://doi.org/10.1017/CBO9780511810817 [CrossRef] [Google Scholar]
  20. Setälä T, Schevchenko A, Kaivola M, Friberg AT, Degree of polarization for optical near fields. Phys. Rev. E (2002) 66, 016615. https://doi.org/10.1103/PhysRevE.66.016615 [CrossRef] [Google Scholar]
  21. Luis A, Degree of polarization for three-dimensional fields as a distance between correlation matrices. Opt. Comm (2005) 253, 10–14. https://doi.org/10.1016/j.optcom.2005.04.046 [NASA ADS] [CrossRef] [Google Scholar]
  22. Maier SA, Plasmonics: Fundamentals and Applications (2007) BerlinSpringer [CrossRef] [Google Scholar]
  23. Martinez-Herrero R, Garcia-Ruiz A, Manjavacas A, Parametric characterization of surface plasmon polaritons at a lossy interface. Opt. Express (2015) 23, 4–28583. [NASA ADS] [Google Scholar]
  24. Martinez-Herrero R, Manjavacas A, Basis for paraxial surface-plasmon-polariton packets. Phys. Rev. A (2016) 94, 063829. https://doi.org/10.1103/PhysRevA.94.063829 [NASA ADS] [CrossRef] [Google Scholar]
  25. Gil JJ, Components of purity of a three-dimensional polarization state. J. Opt. Soc. Am. A (2016) 33, 40–43. https://doi.org/10.1364/JOSAA.33.000040 [NASA ADS] [CrossRef] [Google Scholar]
  26. Setälä T, Tervo J, Friberg AT, Complete electromagnetic coherence in the space–frequency domain. Opt. Lett (2004) 29, 328–330. https://doi.org/10.1364/OL.29.000328 [CrossRef] [Google Scholar]
  27. Born M, Wolf E, Principles of Optics. 7th (expanded) edition, Sec. 1.4.3 (1999) CambridgeCambridge University Press [Google Scholar]
  28. de Fornel F, Evanescent Waves: From Newtonian Optics to Atomic Optics (2001) BerlinSpringerhttps://doi.org/10.1007/978-3-540-48913-9 [Google Scholar]
  29. Palik ED, (ed.)Handbook of Optical Constants of Solids (1998) San DiegoAcademic Press [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.