Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 37
Number of page(s) 8
Published online 21 November 2017
  1. Almeida VR, Xu Q, Barrios CA, Lipson M, Guiding and confining light in void nanostructure. Opt. Lett. (2004) 29, 1209–1211. [NASA ADS] [CrossRef] [Google Scholar]
  2. Barrios CA, Sánchez B, Gylfason KB, Griol A, Sohlström H, Holgado M, Casquel R, Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform. Opt. Express (2007) 15, 6846–6856. [NASA ADS] [CrossRef] [Google Scholar]
  3. Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J, All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Phot. (2009) 3, 216–219. [NASA ADS] [CrossRef] [Google Scholar]
  4. Robinson JT, Chen L, Lipson M, On-chip gas detection in silicon optical microcavities. Opt. Express (2008) 16, 4296–4301. [CrossRef] [Google Scholar]
  5. Barrios CA, Gylfason KB, Sánchez B, Griol A, Sohlström H, Holgado M, Casquel R, Slot-waveguide biochemical sensor. Opt. Lett. (2007) 32, 3080–3082. [NASA ADS] [CrossRef] [Google Scholar]
  6. Dell’Olio F, Passaro VMN, Optical sensing by optimized silicon slot waveguides. Opt. Express (2007) 15, 4977–4993. [CrossRef] [Google Scholar]
  7. Salih M, Janani K, Chen X, Jacobson E, Gautam S, Mickelson A, Losses of slot mode devices. J. Lightwave Technol. (2016) 34, 3901–3907. [NASA ADS] [CrossRef] [Google Scholar]
  8. Baehr-Jones T, Hochberg M, Walker C, Scherer A, High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl. Phys. Lett. (2005) 86, 081101. [NASA ADS] [CrossRef] [Google Scholar]
  9. Xiong C, Pernice WH, Li M, Tang HX, High performance nanophotonic circuits based on partially buried horizontal slot waveguides. Opt. Express (2010) 18, 20690–20698. [CrossRef] [Google Scholar]
  10. Xu Q, Almeida VR, Panepucci RR, Lipson M, Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. (2004) 29, 1626–1628. [NASA ADS] [CrossRef] [Google Scholar]
  11. Sun R, Dong P, Feng N-n, Hong C-y, Michel J, Lipson M, Kimerling L, Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm. Opt. Express (2007) 15, 17967–17972. [NASA ADS] [CrossRef] [Google Scholar]
  12. Preston K, Lipson M, Slot waveguides with polycrystalline silicon for electrical injection. Opt. Express (2009) 17, 1527–1534. [NASA ADS] [CrossRef] [Google Scholar]
  13. Furuta H, Noda H, Ihaya A, Novel optical waveguide for integrated optics. Appl. Opt. (1974) 13, 322–326. [NASA ADS] [CrossRef] [Google Scholar]
  14. Roussey M, Ahmadi L, Pélisset S, Häyrinen M, Bera A, Kontturi V, Laukkanen J, Vartiainen I, Honkanen S, Kuittinen M, Strip-loaded horizontal slot waveguide. Opt. Lett. (2017) 42, 211–214. [NASA ADS] [CrossRef] [Google Scholar]
  15. Lipson M, Guiding, modulating, and emitting light on silicon - challenges and opportunities. J. Lightwave Technol. (2005) 23, 4222–4238. [NASA ADS] [CrossRef] [Google Scholar]
  16. Li L, Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A (1996) 13, 1870–1876. [Google Scholar]
  17. Tervo J, Kuittinen M, Vahimaa P, Turunen J, Aalto T, Heimala P, Leppihalme M, Efficient Bragg waveguide grating analysis by quasi-rigorous approach based on Redheffer’s star product. Opt. Comm. (2001) 198, 265–272. [NASA ADS] [CrossRef] [Google Scholar]
  18. Hugonin J, Lalanne P, Del Villar I, Matias I, Fourier modal methods for modeling optical dielectric waveguides. Opt. Quant. Electron. (2005) 37, 107–119. [CrossRef] [Google Scholar]
  19. Lüsse P, Stuwe P, Schüle J, Unger H-G, Analysis of vectorial mode fields in optical waveguides by a new finite difference method. J. Lightwave Technol. (1994) 12, 487–493. [CrossRef] [Google Scholar]
  20. (06/28/2017) [Google Scholar]
  21. Robinson JT, Preston K, Painter O, Lipson M, First-principle derivation of gain in high-index-contrast waveguides. Opt. Express (2008) 16, 16659–16669. [CrossRef] [Google Scholar]
  22. Leskelä M, Ritala M, Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films (2002) 409, 138–146. [CrossRef] [Google Scholar]
  23. Ritala M, Niinistö J, Atomic Layer Deposition in Jones, a.C., and Hitchman, M.L.: Chemical Vapour Deposition: Precursors, Processes and Applications (2009) CambridgeThe Royal Society of Chemistry158–206. [Google Scholar]
  24. Miikkulainen V, Leskelä M, Ritala M, Puurunen RL, Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J. App. Phys. (2013) 113, 021301. [NASA ADS] [CrossRef] [Google Scholar]
  25. Rukhlenko ID, Premaratne M, Agrawal GP, Effective mode area and its optimization in silicon-nanocrystal waveguides. Opt. Lett. (2012) 37, 2295–2297. [NASA ADS] [CrossRef] [Google Scholar]
  26. Spott A, Baehr-Jones T, Ding R, Liu Y, Bojko R, O’Malley T, Pomerene A, Hill C, Reinhardt W, Hochberg M, Photolithographically fabricated low-loss asymmetric silicon slot waveguides. Opt. Express (2011) 19, 10950–10958. [CrossRef] [Google Scholar]
  27. Alasaarela T, Korn D, Alloatti L, Säynätjoki A, Tervonen A, Palmer R, Leuthold J, Freude W, Honkanen S, Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition. Opt. Express (2011) 19, 11529–11538. [NASA ADS] [CrossRef] [Google Scholar]
  28. Häyrinen M, Roussey M, Säynätjoki A, Kuittinen M, Honkanen S, Titanium dioxide slot waveguides for visible. Appl. Opt. (2015) 54, 2653–2657. [CrossRef] [Google Scholar]
  29. Vlasov Y, McNab S, Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express (2004) 12, 1622–1631. [NASA ADS] [CrossRef] [Google Scholar]
  30. Häyrinen M, Roussey M, Bera A, Kuittinen M, Honkanen S, Atomic Layer Re-Deposition for Nanoscale Devices in Leon Shohet, J.: Encyclopedia of Plasma Technology (2017) AbingdonTaylor and Francis143–151. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.