Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 13
Number of page(s) 8
DOI https://doi.org/10.1186/s41476-017-0044-x
Published online 01 May 2017
  1. Nagatsuma T, Ducournau G, Renaud CC, Advances in terahertz communications accelerated by photonics. Nat. Photonics (2016) 10, 371–379. https://doi.org/10.1038/nphoton.2016.65 [NASA ADS] [CrossRef] [Google Scholar]
  2. Akyildiz IF, Jornet JM, Han C, Terahertz band: Next frontier for wireless communications. Phy. Com. (2014) 12, 16–32. https://doi.org/10.1016/j.phycom.2014.01.006 [CrossRef] [Google Scholar]
  3. Seeds AJ, Shams H, Fice MJ, Renaud CC, TeraHertz Photonics for Wireless Communications. J. Lightwave Technol. (2015) 33, 579–587. https://doi.org/10.1109/JLT.2014.2355137 [NASA ADS] [CrossRef] [Google Scholar]
  4. O’Hara JF, Withayachumnankul W, Al-Naib I, A Review on Thin-film Sensing with Terahertz Waves. J. Infrared Millim. Te. (2012) 33, 245–291. https://doi.org/10.1007/s10762-012-9878-x [CrossRef] [Google Scholar]
  5. Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W, Luo Y, Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol (2016) 34, 810–824. https://doi.org/10.1016/j.tibtech.2016.04.008 [CrossRef] [Google Scholar]
  6. Liu H-B, Zhong H, Karpowicz N, Chen Y, Zhang X-C, Terahertz Spectroscopy and Imaging for Defense and Security Applications. P. IEEE (2007) 95, 1514–1527. https://doi.org/10.1109/JPROC.2007.898903 [Google Scholar]
  7. Jeon T-I, Grischkowsky D, THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet. Appl. Phys. Lett. (2006) 88, 061113. https://doi.org/10.1063/1.2171488 [NASA ADS] [CrossRef] [Google Scholar]
  8. Cooke DG, Jepsen PU, Optical modulation of terahertz pulses in a parallel plate waveguide. Opt. Express (2008) 16, 15123–15129. https://doi.org/10.1364/OE.16.015123 [CrossRef] [Google Scholar]
  9. Gómez Rivas J, Kuttge M, Kurz H, Haring Bolivar P, Sánchez-Gil JA, Low-frequency active surface plasmon optics on semiconductors. Appl. Phys. Lett. (2006) 88, 082106. https://doi.org/10.1063/1.2177348 [CrossRef] [Google Scholar]
  10. Rahm M, Li J-S, Padilla WJ, THz Wave Modulators: A Brief Review on Different Modulation Techniques. J. Infrared Millim. Te. (2013) 34, 1–27. https://doi.org/10.1007/s10762-012-9946-2 [CrossRef] [Google Scholar]
  11. Kühne, P, Herzinger, CM, Schubert, M, Woollam, JA, Hofmann, T: Invited Article: An integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, Vol. 85 (2014). [Google Scholar]
  12. Palik ED, Furdyna JK, Infrared and microwave magnetoplasma effects in semiconductors. Rep. Prog. Phys. (1970) 33, 1193. https://doi.org/10.1088/0034-4885/33/3/307 [NASA ADS] [CrossRef] [Google Scholar]
  13. Schubert M, Hofmann T, Herzinger CM, Generalized far-infrared magneto-optic ellipsometry for semiconductor layer structures: determination of free-carrier effective-mass, mobility, and concentration parameters in n-type GaAs. J. Opt. Soc. Am. A (2003) 20, 347–356. https://doi.org/10.1364/JOSAA.20.000347 [NASA ADS] [CrossRef] [Google Scholar]
  14. Schubert, M, Hofmann, T, Šik, J: Long-wavelength interface modes in semiconductor layer structures. Phys. Rev. B 71 (2005). [Google Scholar]
  15. Hofmann T, Herzinger CM, Krahmer C, Streubel K, Schubert M, The optical Hall effect. Phys. Status Solidi A (2008) 205, 779–783. https://doi.org/10.1002/pssa.200777904 [CrossRef] [Google Scholar]
  16. Mittleman DM, Cunningham J, Nuss MC, Geva M, Noncontact semiconductor wafer characterization with the terahertz Hall effect. Appl. Phys. Lett. (1997) 71, 16. https://doi.org/10.1063/1.119456 [NASA ADS] [CrossRef] [Google Scholar]
  17. Kadlec F, Kadlec C, Kužel P, Contrast in terahertz conductivity of phase-change materials. Solid State Commun (2012) 152, 852–855. https://doi.org/10.1016/j.ssc.2012.02.018 [NASA ADS] [CrossRef] [Google Scholar]
  18. Kužel P, Němec H, Terahertz conductivity in nanoscaled systems: effective medium theory aspects. J. Phys. D Appl. Phys. (2014) 47, 374005. https://doi.org/10.1088/0022-3727/47/37/374005 [CrossRef] [Google Scholar]
  19. Jeon T-I, Grischkowsky D, Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy. Appl. Phys. Lett (1998) 72, 3032. https://doi.org/10.1063/1.121531 [NASA ADS] [CrossRef] [Google Scholar]
  20. Grischkowsky D, Keiding S, Van Exter M, Fattinger C, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B (1990) 7, 2006–2015. https://doi.org/10.1364/JOSAB.7.002006 [Google Scholar]
  21. Ino, Y, Shimano, R, Svirko, Y, Kuwata-Gonokami, M: Terahertz time domain magneto-optical ellipsometry in reflection geometry. Phys. Rev. B 70(15) (2004). https://doi.org/10.1103/PhysRevB.70.155101. [Google Scholar]
  22. Stanislavchuk TN, Kang TD, Rogers PD, Standard EC, Basistyy R, Kotelyanskii AM, Nita G, Zhou T, Carr GL, Kotelyanskii M, et al.Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full Mueller-matrix capability. Rev. Sci. Instrum. (2013) 84, 023901. https://doi.org/10.1063/1.4789495 [Google Scholar]
  23. Palik ED, Kaplan R, Gammon RW, Kaplan H, Wallis RF, Quinn JJ, Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb. Phys. Rev. B (1976) 13, 2497. https://doi.org/10.1103/PhysRevB.13.2497 [Google Scholar]
  24. Brion JJ, Wallis RF, Hartstein A, Burstein E, Theory of Surface Magnetoplasmons in Semiconductors. Phys. Rev. Lett. (1972) 28, 1455–1458. https://doi.org/10.1103/PhysRevLett.28.1455 [NASA ADS] [CrossRef] [Google Scholar]
  25. Kushwaha MS, Plasmons and magnetoplasmons in semiconductor heterostructures. Surf. Sci. Rep. (2001) 41, 1–416. https://doi.org/10.1016/S0167-5729(00)00007-8 [NASA ADS] [CrossRef] [Google Scholar]
  26. Berreman DW, Optics in stratified and anisotropic media: 4×4 -matrix formulation. J. Opt. Soc. Am. (1972) 62, 502–510. https://doi.org/10.1364/JOSA.62.000502 [NASA ADS] [CrossRef] [Google Scholar]
  27. Yu P, Cardona M, Fundamentals of Semiconductor: Physics and Materials Properties (2013) Berlin HeidelbergSpringer [Google Scholar]
  28. Jamshidi H, Parker TJ, The far infrared optical properties of InP at 6 and 300 K. Int. J. Infrared Milli. (1983) 4, 1037–1044. https://doi.org/10.1007/BF01009327 [NASA ADS] [CrossRef] [Google Scholar]
  29. Spitzer WG, Fan HY, Determination of optical constants and carrier effective mass of semiconductors. Phys. Rev. (1957) 106, 882. https://doi.org/10.1103/PhysRev.106.882 [NASA ADS] [CrossRef] [Google Scholar]
  30. van der Pauw L, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. (1958) 13, 1–9. [Google Scholar]
  31. Visnovsky S, Optics in Magnetic Multilayers and Nanostructures (Optical Science and Engineering) (2006) Boca RatonCRC Press [Google Scholar]
  32. Chochol J, Postava K, Čada M, Vanwolleghem M, Halagačka L, Lampin J-F, Pištora J, Magneto-optical properties of InSb for terahertz applications. AIP Adv. (2016) 6, 115021. https://doi.org/10.1063/1.4968178 [NASA ADS] [CrossRef] [Google Scholar]
  33. Rakić AD, Djurišić AB, Elazar JM, Majewski ML, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. (1998) 37, 5271–5283. https://doi.org/10.1364/AO.37.005271 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.