Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 12
Number of page(s) 6
DOI https://doi.org/10.1186/s41476-017-0039-7
Published online 12 April 2017
  1. Lee S, Choi M, Kim T, Lee S, Liu M, Yin X, Choi H, Lee S, Choi C, Choi S, Zhang X, Min B, Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. (2012) 9, 3433–3439. [Google Scholar]
  2. Zhang H, Guo P, Chen P, Chang S, Liquid-crystal-filled photonic crystal for terahertz switch and filter. J. Opt. Soc. Am. B (2009) 26, 101–107. https://doi.org/10.1364/JOSAB.26.000101 [CrossRef] [Google Scholar]
  3. Tao H, Bingham C, Strikwerda A, Pilon D, Shrekenhamer D, Landy N, Fan K, Zhang X, Padilla W, Averitt R, Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Phys. Rev. B. (2008) 78, 241103(R). https://doi.org/10.1103/PhysRevB.78.241103 [Google Scholar]
  4. Robinson S, Nakkeeran R, Investigation on two dimensional photonic crystal resonant cavity based bandpass filter. Optik (2012) 123, 451–457. https://doi.org/10.1016/j.ijleo.2011.05.004 [NASA ADS] [CrossRef] [Google Scholar]
  5. Rodriguez B, Yan R, Kelly M, Fang T, Tahy K, Hwang W, Jena D, Liu L, Xing H, Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. (2012) 3, 780. https://doi.org/10.1038/ncomms1787 [NASA ADS] [CrossRef] [Google Scholar]
  6. Xiao S, Qiu M, Surface-mode microcavity. Appl. Phys. Lett. (2005) 87, 111102. https://doi.org/10.1063/1.2043243 [NASA ADS] [CrossRef] [Google Scholar]
  7. Park I, Lee H, Kim H, Moon K, Lee S, Hoan B, Park S, Lee E, Photonic crystal power-splitter based on directional coupling. Opt. Express (2004) 12, 3599. https://doi.org/10.1364/OPEX.12.003599 [NASA ADS] [CrossRef] [Google Scholar]
  8. Berry C, Jarrahi M, Broadband terahertz polarizing beam splitter on a polymer substrate. J. Infrared Millim. Terahz. Waves (2012) 33, 127–130. https://doi.org/10.1007/s10762-011-9858-6 [CrossRef] [Google Scholar]
  9. Homes C, Carr G, Lobo R, LaVeigne J, Tanner D, Silicon beam splitter for far-infrared and terahertz spectroscopy. Appl. Opt. (2007) 46, 7884. https://doi.org/10.1364/AO.46.007884 [NASA ADS] [CrossRef] [Google Scholar]
  10. Ung B, Fumeaux C, Lin H, Fischer B, Ng B, Abbott D, Low-cost ultra-thin broadband terahertz beam-splitter. Opt. Express (2012) 20, 4968. https://doi.org/10.1364/OE.20.004968 [NASA ADS] [CrossRef] [Google Scholar]
  11. Li J, Liu H, Zhang L, Terahertz wave polarization beam splitter using a cascaded multimode interference structure. Appl. Opt. (2014) 53, 5024. https://doi.org/10.1364/AO.53.005024 [NASA ADS] [CrossRef] [Google Scholar]
  12. Niu T, Withayachumnankul W, Upadhyay A, Gutruf P, Abbott D, Bhaskaran M, Sriram S, Fumeaux C, Terahertz reflectarray as a polarizing beam splitter. Opt. Express (2014) 22, 16148. https://doi.org/10.1364/OE.22.016148 [NASA ADS] [CrossRef] [Google Scholar]
  13. Ren G, Zheng W, Zhang Y, Wang K, Du X, Xing M, Chen L, Mode analysis and design of a low-loss photonic crystal 60° waveguide bend. J. Lightwave Technol. (2008) 26, 2215. https://doi.org/10.1109/JLT.2008.922301 [NASA ADS] [CrossRef] [Google Scholar]
  14. Jellison G, Burke H, The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths. J. Appl. Phys. (1986) 60, 841–843. https://doi.org/10.1063/1.337386 [CrossRef] [Google Scholar]
  15. Corte F, Montefusco M, Moretti L, Rendina I, Cocorullo G, Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J. Appl. Phys. (2000) 88, 7115–7119. https://doi.org/10.1063/1.1328062 [NASA ADS] [CrossRef] [Google Scholar]
  16. Cocorullo G, Corte F, Rendina I, Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl. Phys. Lett. (1999) 74, 3338. https://doi.org/10.1063/1.123337 [NASA ADS] [CrossRef] [Google Scholar]
  17. Ghosh G, Temperature dispersion of refractive indices in crystalline and amorphous silicon. Appl. Phys. Lett. (1995) 66, 3570. https://doi.org/10.1063/1.113790 [NASA ADS] [CrossRef] [Google Scholar]
  18. Tinker M, Lee J, Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency. Opt. Express (2005) 13, 7176–7188. https://doi.org/10.1364/OPEX.13.007174 [CrossRef] [Google Scholar]
  19. Tinker M, Lee J, Thermo-optic photonic crystal light modulator. Appl. Phys. Lett. (2005) 86, 221111. https://doi.org/10.1063/1.1944212 [NASA ADS] [CrossRef] [Google Scholar]
  20. Soldano L, Pennings E, Optical multi-mode interference devices based on self-imaging principles and applications. J. Lightwave Technol. (1995) 13, 615–627. https://doi.org/10.1109/50.372474 [NASA ADS] [CrossRef] [Google Scholar]
  21. Zaytsev K, Katyba G, Kurlov V, et al.Terahertz photonic crystal waveguides based on sapphire shaped crystals. IEEE Trans. Terahertz Sci. Technol. (2016) 6, 4576–582. https://doi.org/10.1109/TTHZ.2016.2555981 [NASA ADS] [CrossRef] [Google Scholar]
  22. Nielsen K, Rasmussen H, Adam A, et al.Bendable, low-loss topas fibers for the terahertz frequency range. Opt. Express (2009) 17, 108592. https://doi.org/10.1364/OE.17.008592 [NASA ADS] [CrossRef] [Google Scholar]
  23. Ma T, Guerboukha H, Girard M, et al.3D printed hollow-core terahertz optical waveguides with Hyper uniform disordered dielectric reflectors. Adv. Opt. Mater. (2016) 4, 122085–2094. https://doi.org/10.1002/adom.201600171 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.