Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1186/s41476-017-0043-y | |
Published online | 01 May 2017 |
- Quabis S, Dorn R, Eberler M, Glöckl O, Leuchs G, Focusing light to a tighter spot. Opt. Commun. (2000) 179, 1–7. https://doi.org/10.1016/S0030-4018(99)00729-4doi:10.1016/S0030-4018(99)00729-4 [NASA ADS] [CrossRef] [Google Scholar]
- Sondermann M, Maiwald R, Konermann H, Lindlein N, Peschel U, Leuchs G, Design of a mode converter for efficient light-atom coupling in free space. Appl. Phys. B (2007) 89, 4489–492. https://doi.org/10.1007/s00340-007-2859-4doi:10.1007/s00340-007-2859-4 [NASA ADS] [CrossRef] [Google Scholar]
- Stobinska M, Alber G, Leuchs G, Perfect excitation of a matter qubit by a single photon in free space. EPL (Europhys. Lett.) (2009) 86, 114007. https://doi.org/10.1209/0295-5075/86/14007 [NASA ADS] [CrossRef] [Google Scholar]
- Leuchs G, Sondermann M, Light-matter interaction in free space. J. Mod. Opt. (2013) 60, 136–42. https://doi.org/10.1080/09500340.2012.716461doi:10.1080/09500340.2012.716461. [NASA ADS] [CrossRef] [Google Scholar]
- Piro N, Rohde F, Schuck C, Almendros M, Huwer J, Ghosh J, Haase A, Hennrich M, Dubin F, Eschner J, Heralded single-photon absorption by a single atom. Nat. Phys. (2011) 7, 117–20. https://doi.org/10.1038/nphys1805doi:10.1038/nphys1805 [CrossRef] [Google Scholar]
- Tey MK, Maslennikov G, Liew TCH, Aljunid SA, Huber F, Chng B, Chen Z, Scarani V, Kurtsiefer C, Interfacing light and single atoms with a lens. New J. Phys. (2009) 11, 4043011. https://doi.org/10.1088/1367-2630/11/4/043011 [NASA ADS] [CrossRef] [Google Scholar]
- Wrigge G, Gerhardt I, Hwang J, Zumofen G, Sandoghdar V, Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. (2008) 4, 160–66. https://doi.org/10.1038/nphys812doi:10.1038/nphys812 [CrossRef] [Google Scholar]
- Pinotsi D, Imamoglu A, Single photon absorption by a single quantum emitter. Phys. Rev. Lett. (2008) 100, 093603. https://doi.org/10.1103/PhysRevLett.100.093603doi:10.1103/PhysRevLett.100.093603 [NASA ADS] [CrossRef] [Google Scholar]
- Drechsler A, Lieb M, Debus C, Meixner A, Tarrach G, Confocal microscopy with a high numerical aperture parabolic mirror. Opt. Express (2001) 9, 12637–644. https://doi.org/10.1364/OE.9.000637doi:10.1364/OE.9.000637 [NASA ADS] [CrossRef] [Google Scholar]
- Stadler J, Stanciu C, Stupperich C, Meixner A. J, Tighter focusing with a parabolic mirror. Opt. Lett. (2008) 33, 7681–683. https://doi.org/10.1364/OL.33.000681 [NASA ADS] [CrossRef] [Google Scholar]
- Lindlein N, Maiwald R, Konermann H, Sondermann M, Peschel U, Leuchs G, A new 4 π geometry optimized for focusing on an atom with a dipole-like radiation pattern. Laser Phys. (2007) 17, 7927–934. https://doi.org/10.1134/S1054660X07070055doi:10.1134/S1054660X07070055 [NASA ADS] [CrossRef] [Google Scholar]
- Maiwald R, Leibfried D, Britton J, Bergquist J. C, Leuchs G, Wineland DJ, Stylus ion trap for enhanced access and sensing. Nat. Phys. (2009) 5, 8551–554. https://doi.org/10.1038/nphys1311doi:10.1038/nphys1311 [CrossRef] [Google Scholar]
- Fischer M, Bader M, Maiwald R, Golla A, Sondermann M, Leuchs G, Efficient saturation of an ion in free space. Appl. Phys. B (2014) 117, 3797–801. https://doi.org/10.1007/s00340-014-5817-ydoi:10.1007/s00340-014-5817-y [NASA ADS] [CrossRef] [Google Scholar]
- Linke NM, Allcock DTC, Szwer DJ, Ballance CJ, Harty TP, Janacek HA, Stacey DN, Steane AM, Lucas DM, Background-free detection of trapped ions. Appl. Phys. B (2012) 107, 41175–1180. https://doi.org/10.1007/s00340-011-4870-zdoi:10.1007/s00340-011-4870-z [NASA ADS] [CrossRef] [Google Scholar]
- Leuchs, G, Mantel, K, Berger, A, Konermann, H, Sondermann, M, Peschel, U, Lindlein, N, Schwider, J: Interferometric null test of a deep parabolic reflector generating a hertzian dipole field. Appl. Opt. 47(30), 5570 (2008). doi:10.1364/AO.47.005570. [Google Scholar]
- Bassett, IM: Limit to concentration by focusing. Optica Acta Intl. J. Opt. 33(3), 279–286 (1986). doi:10.1080/713821943. [Google Scholar]
- Quabis, S, Dorn, R, Leuchs, G: Generation of a radially polarized doughnut mode of high quality. Appl. Phys. B. 81(5), 597–600 (2005). doi:10.1007/s00340-005-1887-1. [Google Scholar]
- Golla, A, Chalopin, B, Bader, M, Harder, I, Mantel, K, Maiwald, R, Lindlein, N, Sondermann, M, Leuchs, G: Generation of a wave packet tailored to efficient free space excitation of a single atom. Eur. Phys. J. D. 66(7), 190 (2012). doi:10.1140/epjd/e2012-30293-y. arXiv:1207.3215. [Google Scholar]
- Sondermann, M, Lindlein, N, Leuchs, G: Maximizing the electric field strength in the foci of high numerical aperture optics. ArXiv e-prints (2008). 0811.2098. [Google Scholar]
- Alber, G, Bernád, JZ, Stobińska, M, Sánchez-Soto, LL, Leuchs, G: Qed with a parabolic mirror. Phys. Rev. A. 88, 023825 (2013). doi:10.1103/PhysRevA.88.023825.https://arxiv.org/abs/0811.2098. [Google Scholar]
- Meyer HM, Steiner M, Ratschbacher L, Zipkes C, Köhl M, Laser spectroscopy and cooling of Yb+ ions on a deep-UV transition. Phys. Rev. A (2012) 85, 1012502. https://doi.org/10.1103/PhysRevA.85.012502doi:10.1103/PhysRevA.85.012502 [NASA ADS] [CrossRef] [Google Scholar]
- Olmschenk S, Younge KC, Moehring DL, Matsukevich D. N, Maunz P, Monroe C, Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A (2007) 76, 5052314. https://doi.org/10.1103/PhysRevA.76.052314doi:10.1103/PhysRevA.76.052314 [CrossRef] [Google Scholar]
- Richards B, Wolf E, Electromagnetic diffraction in optical systems. II, structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. (1959) 253, 1274358–379. https://doi.org/10.1098/rspa.1959.0200doi:10.1098/rspa.1959.0200 [Google Scholar]
- Sheppard CJR, Choudhury A, Image formation in the scanning microscope. Optica Acta Int. J. Opt. (1977) 24, 101051–1073. https://doi.org/10.1080/713819421doi:10.1080/713819421 [NASA ADS] [CrossRef] [Google Scholar]
- Hell SW, Far-field optical nanoscopy. Science (2007) 316, 58281153–1158. https://doi.org/10.1126/science.1137395doi:10.1126/science.1137395 [CrossRef] [PubMed] [Google Scholar]
- Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, Xu C, In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics (2013) 7, 3205–209. https://doi.org/10.1038/nphoton.2012.336doi:10.1038/nphoton.2012.336 [NASA ADS] [CrossRef] [Google Scholar]
- Denk W, Strickler JH, Webb WW, Two-photon laser scanning fluorescence microscopy. Science (1990) 248, 495173–76. https://doi.org/10.1126/science.2321027doi:10.1126/science.2321027 [NASA ADS] [CrossRef] [Google Scholar]
- Andersen, ME, Muggli, RZ: Microscopical techniques in the use of the molecular optics laser examiner raman microprobe. Anal. Chem. 53(12), 1772–1777 (1981). doi:10.1021/ac00235a013. http://dx.doi.org/10.1021/ac00235a013 [Google Scholar]
- Heugel S, Fischer M, Elman V, Maiwald R, Sondermann M, Leuchs G, Resonant photo-ionization of Yb+ to Yb2+. J. Phys. B Atomic Mol. Opt. Phys. (2016) 49, 1015002. https://doi.org/10.1088/0953-4075/49/1/015002doi:10.1088/0953-4075/49/1/015002 [NASA ADS] [CrossRef] [Google Scholar]
- Tey MK, Maslennikov G, Liew TCH, Aljunid SA, Huber F, Chng B, Chen Z, Scarani V, Kurtsiefer C, Interfacing light and single atoms with a lens. New J. Phys. (2009) 11, 4043011. https://doi.org/10.1088/1367-2630/11/4/043011 [NASA ADS] [CrossRef] [Google Scholar]
- Eschner J, Sub-wavelength resolution of optical fields probed by single trapped ions: Interference, phase modulation, and which-way information. Eur. Phys. J. D (2003) 22, 3341–345. https://doi.org/10.1140/epjd/e2002-00235-7doi:10.1140/epjd/e2002-00235-7 [NASA ADS] [CrossRef] [Google Scholar]
- Stenholm S, The semiclassical theory of laser cooling. Rev. Mod. Phys. (1986) 58, 699–739. https://doi.org/10.1103/RevModPhys.58.699doi:10.1103/RevModPhys.58.699 [Google Scholar]
- Eschner J, Morigi G, Schmidt-Kaler F, Blatt R, Laser cooling of trapped ions. J. Opt. Soc. Am. B (2003) 20, 51003–1015. https://doi.org/10.1364/JOSAB.20.001003doi:10.1364/JOSAB.20.001003 [CrossRef] [Google Scholar]
- Chang R, Hoendervanger AL, Bouton Q, Fang Y, Klafka T, Audo K, Aspect A, Westbrook CI, Clément D, Three-dimensional laser cooling at the doppler limit. Phys. Rev. A (2014) 90, 063407. https://doi.org/10.1103/PhysRevA.90.063407doi:10.1103/PhysRevA.90.063407 [NASA ADS] [CrossRef] [Google Scholar]
- Maiwald R, Golla A, Fischer M, Bader M, Heugel S, Chalopin B, Sondermann M, Leuchs G, Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A (2012) 86, 4043431. https://doi.org/10.1103/PhysRevA.86.043431doi:10.1103/PhysRevA.86.043431 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.