Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14029 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2014.14029 | |
Published online | 04 August 2014 |
- M. Fingas, The Basics of Oil Spill Cleanup (CRC Press Taylor & Francis Group, Boca Raton, 2013). [Google Scholar]
- http://balticseanow.turkuamk.fi/index.php/the-number-of-oil-spills-down-to-half-in-the-baltic-sea/ [Google Scholar]
- C. D. Geddes, and J. R. Lakowicz (eds.), Reviews in Fluorescence 2005 (Springer, New York, 2005). [CrossRef] [Google Scholar]
- T. D. Downare, and O. C. Mullins, “Visible and near-infrared fluorescence of crude oils,” Appl. Spectrosc. 49, 754–764 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- M. Fingas, and C. Brown, Review of oil spill remote sensors (Seventh International Conference on Remote Sensing for Marine and Coastal Environments, Miami, 20–22 May 2002). [Google Scholar]
- Z. Wang, and S. Stout, Oil Spill Environmental Forensics: Finger-printing and Source Identification (Elsevier, Boston, 2007). [Google Scholar]
- N. Skou, B. Sorensen, and A. Poulson, “A new airborne dual frequency microwave radiometer for mapping and quantifying mineral oil on the sea surface, in Proceedings to the Second Thematic Conference on Remote Sensing for Marine and Coastal Environments, II559-II565 (ERIM Conferences, Ann Arbor, 1994). [Google Scholar]
- O. Zielinski, J. A. Busch, A. D. Cembella, K. L. Daly, J. Engelbrektsson, A. K. Hannides, and H. Schmidt, “Detecting marine hazardous substances and organisms: sensors for pollutants, toxins and pathogens,” Ocean Sci. 5, 329–349 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- J. Bublitz, A. Christophersen, and W. Schade, “Laser-based detection of PAHs and BTXE aromatics in oil polluted soil samples,” Fresenius J. Anal. Chem. 355, 684–686 (1996). [CrossRef] [Google Scholar]
- J. Bublitz, and W. Schade, “Multiwavelength laser-induced fluorescence spectroscopy for quantitative classification of aromatic hydrocarbons,” Proc. SPIE 2504, 265–277 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- U. Frank, “A review of fluorescence spectroscopic method for oil spill source identification,” Toxicol. Environ. Chem. Rev. 2, 163–185 (1978). [NASA ADS] [Google Scholar]
- S. Patsayeva, “Fluorescent remote diagnostics of oil pollutions: oil in films and oil dispersed in the water body,” EARSeL Adv. Remote Sens. 3, 170–178 (1995). [Google Scholar]
- L. Poryvkina, S. Babichenko, and O. Davydova, “SFS characterisation of oil pollution in natural water,” in Proceedings to 5th International Conference on Remote Sensing for Marine and Coastal Environments, 520–524 (Michican Tech Research Institute, San Diego, 1998). [Google Scholar]
- E. Baszanowska, and Z. Otremba, “Spectroscopic methods in application to oil pollution detection in the sea,” J. KONES 19, 15–20 (2012). [Google Scholar]
- T. A. Dolenko, V. V. Fadeev, I. V. Gerdova, S. A. Dolenko, and R. Reuter, “Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural networks,” Appl. Opt. 41, 5155–5166 (2002). [CrossRef] [Google Scholar]
- H. Visser, “Teledetection of the thickness of oil films on polluted water based on the oil fluorescence properties,” Appl. Opt. 18, 1746–1749 (1979). [CrossRef] [Google Scholar]
- E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, “Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Europ. Opt. Soc. Rap. Public. 8, 13069 (2013). [CrossRef] [Google Scholar]
- R. Karpicz, A. Dementjev, Z. Kuprionis, S. Pakalnis, R. Westphal, R. Reuter, and V. Gulbinas, “Oil spill fluorosensing lidar for inclined onshore or shipboard operation,” Appl. Opt. 45, 6620–6625 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Vasilescu, L. Marmureanu, E. Carstea, and C. P. Cristescu, “Oil spills detection from fluorescence lidar measurements,” U. P. B. Sci. Bull., Series A 72, 149–154 (2010). [Google Scholar]
- A. G. Abroskin, S. E. Nol’de, V. V. Fadeev, and V. V. Chubarov, “Laser fluorimetry determination of emulsified-dissolved oil in water,” Sov. Phys. Dokl. 33, 215–217 (1988). [NASA ADS] [Google Scholar]
- E. Baszanowska, Z. Otremba, H. Toczek, and P. Rohde, “Fluorescence spectra of oil after it contacts with aquatic environment,” J. KONES 20, 29–34 (2013). [Google Scholar]
- Z. Otremba, E. Baszanowska, H. Toczek, and P. Rohde, “Spectrofluorymetry in application to oil-in-water emulsion characterization,” J. KONES 18, 317–321 (2011). [Google Scholar]
- P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346, (1996). [NASA ADS] [CrossRef] [Google Scholar]
- P. G. Coble, “Marine optical biogeochemistry: the chemistry of ocean color,” Chem. Rev. 107, 402–418 (2007). [CrossRef] [Google Scholar]
- P. G. Coble, “Colored dissolved organic matter in seawater,” in Subsea Optics and Imaging, J. Watson, and O. Zielinski, eds., 98–118 (1st edition, Woodhead Publishing, Cambridge, 2013). [CrossRef] [Google Scholar]
- V. Drozdowska, W. Freda, E. Baszanowska, K. Rudź, M. Darecki, J. Heldt, and H. Toczek, “Spectral properties of natural and oil polluted Baltic seawater – results of measurements and modelling,” Eur. Phys. J. Special Topics 222, 2157–2170 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- P. Kowalczuk, J. Stoń-Egiert, W. J. Cooper, R. F. Whitehead, and M. J. Durako, “Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy,” Mar. Chem. 96, 273–292 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- J. H. Christensen, A. B. Hansen, J. Mortensen, and O. Andersen, “Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis,” Anal. Chem. 77, 2210–2217 (2005). [CrossRef] [Google Scholar]
- Operation manual, Aqualog Horiba, rev. A (Horiba Scientific, 2011). [Google Scholar]
- R. N. Conmy, P. G. Coble, J. Farr, A. M. Wood, K. Lee, W. S. Pegau, I. D. Walsh, et al.,“Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring,” Environ. Sci. Technol. 48, 1803–1810 (2014). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.