Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14030
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2014.14030
Published online 07 August 2014
  1. U. Kreibing, and M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995). [CrossRef] [Google Scholar]
  2. P. Mulvaney, “Surface Plasmon Spectroscopy of Nanosized Metal. Particles,” Langmuir 12, 788–800 (1996). [CrossRef] [Google Scholar]
  3. S.-Z. Tan, Y.-J. Hu, J.-W. Chen, G.-L. Shen, and R.-Q. Yu, “An optical sensor based on covalent immobilization of 1-aminopyrene using Au nanoparticles as bridges and carriers,” Sensor. Actuat. B-Chem 124(1), 68–73 (2007). [CrossRef] [Google Scholar]
  4. D. Zheng, C. Hu, T. Gan, X. Dang, and S. Hu, “Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles,” Sensor. Actuat. B-Chem 14(1), 247–252 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  5. F. Lu, T. L. Doane, J.-J. Zhu, C. Burda, “2Gold nanoparticles for diagnostic sensing and therapy,” Special Issue: Metals in Medicine, Inorganica Chimica Acta 393, 142–153 (2012). [Google Scholar]
  6. W. B. Liechty, and N. A. Peppas, “Expert opinion: Responsive polymer nanoparticles in cancer therapy,” Eur. J. Pharm. Biopharm. 80(2), 241–246 (2012). [CrossRef] [Google Scholar]
  7. P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2(1), 18–29 (2007). [Google Scholar]
  8. M. E. Greene, “Nanoparticles help paint resist germs: Nanotechnology,” Mater. Today 11(3), 16 (2008). [Google Scholar]
  9. A. A. Dakhel, “Preparation and optical study of Au nanograins in amorphous La-oxide medium,” Colloid. Surface. A 332, 9–12 (2009). [CrossRef] [Google Scholar]
  10. N. Shalkevich, W. Escher, T. Bürgi, B. Michel, L. Si-Ahmed, and Dimos Poulikakos, “On the Thermal Conductivity of Gold Nanoparticle Colloids,” Langmuir 26(2), 663–670 (2010). [CrossRef] [Google Scholar]
  11. S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge, and R. G. Shimmin, “Thermal conductivity of nanoparticle suspensions,” J. Appl. Phys. 99, 084308 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  12. H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran Nair, B. George, and T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects,” Appl. Phys. Lett. 83, 2931 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  13. D. Lee, “Thermophysical properties of interfacial layer in nanofluids,” Langmuir 23(11), 6011–6018 (2007). [CrossRef] [Google Scholar]
  14. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79, 2252 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  15. H. Yang, L. Zhang, and X. Fu, “Spectral evolution of an optical pattern generated by spatial modulation instability in a reorientational Kerr nonlinear medium,” J. Mod. Optic. 59(2), (2012). [Google Scholar]
  16. R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength Modulational Instability and Plasmon Oscillons in Nanoparticle Arrays,” Phys. Rev. Lett. 108, 093901 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  17. B. Gu, F. Ye, K. Lou, Y. Li, J. Chen, and H.-T. Wang, “Vectorial self-diffraction effect in optically Kerr medium,” Opt. Express 20(1), 149 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  18. B. V. Ana, and K. Saravanamuttu, “Diversity and slow dynamics of diffraction rings:a comprehensive study of spatial self-phase modulation in a photopolymer,” J. Opt. Soc. Am. B 29(8), 2357–2372 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  19. W. J. Wan, S. Jia, “Dispersive superfluid-like shock waves in non-linear optics,” Nat. Phys. 3, 46 (2007). [Google Scholar]
  20. N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99, 043903 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  21. A. I. Yakimenko, Y. A. Zaliznyak, and Y. S. Kivshar, “Stable vortex solitons in nonlocal self-focusing nonlinear media,” Phys. Rev. E 71, 065603(R) (2005). [NASA ADS] [CrossRef] [Google Scholar]
  22. B. Alfassi, C. Rotschild, and M. Segev, “Incoherent surface solitons in effectively instantaneous nonlocal nonlinear media,” Phys. Rev. A 80, 041808 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  23. S. Namiki, T. Kurosu, K. Tanizawa, S. Petit, G. Mingyi, and J. Kurumida, “Controlling Optical Signals Through Parametric Processes,” IEEE J. Sel. Top. Quant. 18(2), 717–725 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  24. X. Q. Wang, Q. Ren, F. J. Zhang, W. F. Guo, X. B. Sun, J. Sun, H. L. Yang, et al., “Preparation, characterization, thermal and third-order nonlinear optical properties of bis(tetraethylammonium) bis(2-thioxo-1,3-dithiole-4,5-dithiolato)cuprate(II),” Mater. Res. Bull. 43(8), 2342–2353 (2008). [CrossRef] [Google Scholar]
  25. A. Y. Fasasi, M. Maaza, C. Theron, et al., “Non-linear absorption and second harmonic imaging of Zn–BaTiO3 thin films prepared by laser ablation,” Thin Solid Films 516(18), 6233 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  26. Y. H. Wang, J. D. Lu, R. W. Wang, S. J. Peng, Y. L. Mao, and Y. G. Cheng, “Optical nonlinearities of Au nanocluster composite fabricated by 300 keV ion implantation,” Physica B. 403, 3399–3402 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  27. Y. H. Wang, Y. M. Wang, J. D. Lu, L. L. Ji, R. G. Zhang, and R. W. Wang, “Nonlinear optical properties of Cu nanoclusters by ion implantation in silicate glass,” Opt. Commun. 283, 486–489 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  28. X.-X. Yu, and Y.-H. Wang, “Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerrlens autocorrelation method,” Opt. Express 22, 177–18 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  29. S. Qu, C. Zhao, X. Jiang, G. Fang, Y. Gao, H. Zeng, Y. Song, et al., “Optical nonlinearities of space selectively precipitated Au nanoparticles inside glasses,” Chem. Phys. Lett. 368, 352–358 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  30. S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by femtosecond laser,” Opt. Mater. 28, 259–265 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  31. P. Lesiak, and M. Wójcik, “Nonlinear optical characterization of the gold nanoparticles coated by thiols,” Photonics Letters of Poland 3(3), 113–115 (2001). [Google Scholar]
  32. H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and Wei Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  33. Y. Zhang, M. Ma, X. Wang, D. Fu, N. Gu, et al., “Second-order optical nonlinearity of surface-capped CdS nanoparticles and effect of surface modification,” J. Phys. Chem. Solids 64, 927–931 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  34. N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in Nonlocal Media,” Phys. Rev. Lett. 99, 043903 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  35. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quant. Electron 26, 760 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  36. J. P Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in laser with Inserted liquid samples”, J. Appl. Phys. 36(1), 3–8 (1965) . [NASA ADS] [CrossRef] [Google Scholar]
  37. C. A. Carter, and J. M. Harris, “Comparasion of models describing the thermal lens effect,” Appl. Optics 23, 476–481 (1984). [CrossRef] [Google Scholar]
  38. E. W. Van Stryland, and M. Sheik-Bahae “Z-Scan Measurements of Optical Nonlinearities,” in Characterization Techniques and Tabulations for Organic Nonlinear Materials M. G. Kuzyk, and C. W. Dirk, Eds., 655–692 (Marcel Dekker, Inc., New York City, 1998). [Google Scholar]
  39. S. A. Akhmanov, D. P. Krindach, A. V. Migulin, A. P. Sukhroukov, and R. V. Khokhlov, “Thermal self-actions of laser beams,” IEEE J. Quant. Electron. 4(10), 568–575 (1968). [NASA ADS] [CrossRef] [Google Scholar]
  40. C. A. Carter, and J. M. Harris, “Comparison of models describing the thermal lens effect,” Appl. Optics 23, 476–481 (1984). [CrossRef] [Google Scholar]
  41. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised nanoparticles in two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun. 7, 801–802 (1994). [CrossRef] [Google Scholar]
  42. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-Vis spectra,” Anal. Chem. 79, 4215–4221 (2007). [CrossRef] [Google Scholar]
  43. C. C. López-Mora, M. Trejo-Duran, E. Alvarado-Méndez, R. Rojas-Laguna, E. Vargas-Rodríguez, J. M. Estudillo-Ayala, R. Mata-Chavez, et al., “PC-Based systems for experiments in optical characterization of materials,” J. Phys. Conf. Ser. 274, 12059 (2011). [Google Scholar]
  44. H. Nadjari, F. Hajiesmaeilbaigi, and A. Motamedi, “Thermo Optical Response and Optical Limiting in Ag and Au Nanocolloid Prepared by Laser Ablation,” Laser Phys. 20(4), 859–864 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  45. M. Trejo-Duran, E. Alvarado-Mendez, E. Vargas-Rodriguez, J. M. Estudillo-Ayala, and R. I. Mata-Chavez, “Nonlinear optical characterization of ionics liquids of 1-methylpyrrolidine family,” Proc. SPIE 8412, 84121X–1 (2012). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.