Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14012
Number of page(s) 14
DOI https://doi.org/10.2971/jeos.2014.14012
Published online 06 March 2014
  1. H. A. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed] [Google Scholar]
  2. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21, 3504–3509 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  3. E. Rephaeli, and S. Fan. “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17 15145–15159 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  4. X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology 20, 215704 (2009). [Google Scholar]
  5. Y. Guo, and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21, 15014–15019 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  6. X. L. Liu, L. P. Wang, and Z. M. Zhang, “Wideband Tunable Omnidirectional Infrared Absorbers Based on Doped-Silicon Nanowire Arrays,” J. Heat Transf. 135, 061602 (2013). [CrossRef] [Google Scholar]
  7. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “Allmetallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002). [CrossRef] [Google Scholar]
  8. T. Maier, and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35 3766–3768 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  9. E. L. Dereniak, and D. G. Crowe, Optical Radiation Detectors (John Wiley and Sons, Hoboken, 2008). [Google Scholar]
  10. Handbook of Optics Volume I: Fundamentals, Techniques, and Design, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (Second Edition, McGraw-Hill, New York, 1995). [Google Scholar]
  11. A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser and Photonics Reviews 4, 738–750 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  12. S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, et al., “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011). [CrossRef] [Google Scholar]
  13. C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,” Infrared. Phys. Techn. 52, 348–352 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  14. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105–3 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  15. J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong coupling of molecular and mid-infrared perfect absorber resonances,” IEEE Photonic. Tech. L. 24, 31–33 (2012). [Google Scholar]
  16. N. I. Landy, S. Sajuyigbe , J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  17. C. Wu, and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37, 308–310 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  18. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  19. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2008). [Google Scholar]
  20. G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  21. C. Lin, and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  22. Y. Park, E. Drouard, O. El-Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312 (2009). [CrossRef] [Google Scholar]
  23. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B. 20, 1538–1541 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  24. G. C. R. Devarapu, and S. Foteinopoulou, “Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity,” Opt. Express 20, 13040–13054 (2012). [CrossRef] [Google Scholar]
  25. G. C. R. Devarapu, and S. Foteinopoulou, “Compact photonic-crystal superabsorbers from strongly absorbing media,” J. Appl. Phys. 114, 033504 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  26. C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, Hoboken, 2005). [Google Scholar]
  27. C. Engstrom, C. Hafner, and K. Schmidt, “Computations of lossy bloch waves in two-dimensional photonic crystals,” J. Comput. Theor. Nanos. 6, 1–9 (2009). [Google Scholar]
  28. A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum. Elect. 13, 296–304 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  29. A. Mouldi, and M. Kanzari, “Design of an omnidirectional mirror using one dimensional photonic crystal with graded geometric layers thicknesses,” Optik 123, 125–131 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  30. A. Mouldi, and M. Kanzari, “Broad multilayer antireflection coating by apodized and chirped photonic crystal,” Opt. Commun. 284, 4124–4128 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  31. P. B. Catrysse, and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422–5 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  32. R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. T. R. Soc. Lond. A 359, 635–644 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  33. B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42, 8683–8699 (2013). [CrossRef] [Google Scholar]
  34. J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  35. R. Assendorp, P. R. Wesselius, D. C. B. Whittet, and T. Prusti, “A study of the Chamaeleon I Dark Cloud and T-association - II: High resolution IRAS maps around HD97048 and HD97300,” Mon. Not. R. Astron. Soc. 247, 624–631 (1990). [Google Scholar]
  36. H. L. Johnson, and W. W. Morgan, “Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas,” Astrophys. J. 117, 313–352 (1953). [NASA ADS] [CrossRef] [Google Scholar]
  37. H. U. Kaufl, “Ground-based astronomy in the 10 and 20 µm atmospheric windows at ESO - scientific potential at present and in the future,” The Messenger 73, 8–12 (1993). [NASA ADS] [Google Scholar]
  38. P. Yeh, Optical waves in layered media (Wiley-Interscience, Hoboken, 2005). [Google Scholar]
  39. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  40. A. Yariv, and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am. 67, 438–447 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  41. S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005). [CrossRef] [Google Scholar]
  42. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of light (Princeton University Press, Princeton, 2008). [Google Scholar]
  43. P. Markos, and C. M. Soukoulis, From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, Princeton, 2008). [Google Scholar]
  44. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  45. S. Foteinopoulou, “Photonic crystals as metamaterials,” Physica B 407, 4056 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  46. J. D. Jackson, Classical Electrodynamics (Third Edition, John Wiley and Sons, Hoboken, 1998). [Google Scholar]
  47. D. E. Knuth, The art of computer programming vol. 2 (Third edition, Addison-Wesley, Boston, 1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.