Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14013 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.2971/jeos.2014.14013 | |
Published online | 11 March 2014 |
- N. Barbour, and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. Passaro, and F. Peluso, Gyroscope technologies for space applications (4th Round Table on Micro/Nano Technologies for Space, Noordwijk, 20–22 May 2003). [Google Scholar]
- K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, et al., “The development of micro-gyroscope technology,” J. Micromech. Microeng. 19, 113001 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- “Gyroscopes and IMUs for defense, Aerospace & Industrial,” Yole Development Report (2012), http://www.reportlinker.com/p01008831-summary/Gyroscopes-and-IMUs-for-Defense-Aerospace-Industrial.html [Google Scholar]
- W. W. Chow, J. Gea-Banaloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985). [NASA ADS] [CrossRef] [Google Scholar]
- F. Aronowitz, “Fundamentals of the ring laser gyro,” in Optical gyros and their applications, D. Loukianov, R. Rodloff, H. Sorg, B. Stieler, eds., (Canada Communications Group, Quebec, 1999). [Google Scholar]
- B. Culshaw, and I. P. Giles, “Fibre optic gyroscopes,” J. Phys. E: Sci. Instrum. 16, 5–15 (1983). [NASA ADS] [CrossRef] [Google Scholar]
- H. C. Lefèvre, “Fundamentals of the interferometric fiber-optic gyroscope,” Opt. Rev. 4, 20–27 (1997). [CrossRef] [Google Scholar]
- B. Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17, R1–R16 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967). [NASA ADS] [CrossRef] [Google Scholar]
- P. Pai, F. K. Chowdhury, C. H. Mastrangelo, and M. Tabib-Azar, “MEMS-based hemispherical resonator gyroscopes,” in Proceedings to the IEEE Sensors Conference, 1–4 (IEEE, Taipei, 2012). [Google Scholar]
- M. A. Gleyzes, L. Perret, and P. Kubik, Pleiades architecture and main performances (XXII Congress of the International Society for Photogrammetry and Remote Sensing, Melbourne, 25 August–1 September 2012). [Google Scholar]
- ADM-Aeolus (Atmospheric Dynamics Mission) https://directory.eoportal.org/web/eoportal/satellite-missions/a/adm-aeolus [Google Scholar]
- D. Zorita, A. Agenjo, S. Llorente, G. Chlewicki, A. Cocito, P. Rideau, S. Thuerey, et al., How Planck AOCS behaved, commissioning early orbit and pointing manoeuvres (8th International ESA Conference on Guidance, Navigation & Control Systems, Karlovy Vary, 2011). [Google Scholar]
- Alphasat I/Inmarsat-XL (Inmarsat-Extended L-band Payload) https://directory.eoportal.org/web/eoportal/satellite-missions/a/alphasat [Google Scholar]
- M. F. Zaman, A. Sharma, Z. Hao, F. Ayazi, “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour allan deviation bias instability,” IEEE J. Microelectromech. Syst. 17, 1526–1536 (2008). [Google Scholar]
- E. A. Donley, “Nuclear magnetic resonance gyroscopes,” in Proceedings to the IEEE Sensors Conference, 17–22 (IEEE, Kona, 2010). [Google Scholar]
- M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in gyroscope technologies (Springer-Verlag, Heidelberg, 2010). [Google Scholar]
- C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- O. Kenji, “Semiconductor ring laser gyro,” Japanese Patent # JP 60,148,185 (1985). [Google Scholar]
- C. Ji, M. H. Leary, and J. M. Ballantyne, “Long wavelength triangular ring laser,” IEEE Photonic. Tech. Lett. 9, 1469–1471 (1997). [CrossRef] [Google Scholar]
- R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP-based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64, 1753–1755 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- T. Krauss, R. M. De La Rue, and P. J. R. Laybourn, “Impact of output coupler configuration on operating characteristics of semiconductor ring lasers,” J. Lightwave Technol. 13, 1500–1507 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- M. Sorel, P. J. R. Laybourn, A. Scirè, S. Balle, G. Guiliani, R. Miglierina, and S. Donati, “Alternate oscillations in semiconductor ring lasers,” Opt. Lett. 27, 1992–1994 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- H. Cao, H. Ling, C. Liu, H. Deng, M. Benavidez, V. A. Smagley, R. B. Caldwell, et al. “Large S-section-ring-cavity diode lasers: directional switching, electrical diagnostics, and mode beating spectra,” IEEE Photonic. Tech. Lett. 17, 282–284 (2005). [Google Scholar]
- J. P. Hohimer, and G. A. Vawter, “Unidirectional semiconductor ring lasers with racetrack cavities,” Appl. Phys. Lett. 63, 2457–2459 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- M. N. Armenise, C. Ciminelli, F. De Leonardis, and V. M. N. Passaro, “Quantum effects in new integrated optical angular velocity sensors,” in Proceedings to the 5th International Conference on Space Optics, 595–597 (ESA, Noordwijk, 2004). [Google Scholar]
- G. L. Vossler, M. D. Olinger, and J. L. Page, “Solid medium optical ring laser,” United States Patent US005408492A (1995). [Google Scholar]
- M. Armenise, Study and design of an integrated optical sensor for miniaturized gyroscopes for space applications (Master’s degree thesis, Bari Polytechnic, 1997). [Google Scholar]
- M. Armenise, and P. J. R. Laybourn, “Design and Simulation of a Ring Laser for Miniaturised Gyroscopes,” Proc. SPIE 3464, 81–90 (1998). [CrossRef] [Google Scholar]
- P. J. R. Laybourn, Integrated optoelectronics application in space (ESA International Workshop on Innovation for Competitiveness, Annex I, Noordwijk, 19–21 March 1997). [Google Scholar]
- S. Donati, G. Giuliani, and M. Sorel, “Proposal of a new approach to the electrooptical gyroscope: the GaAlAs integrated ring laser,” Alta Freq. 9, 61–63 (1997). [Google Scholar]
- M. Sorel, P. J. Laybourn, G. Giuliani, and S. Donati, “Progress on the GaAlAs ring laser gyroscope,” Alta Frequenza - Rivista Di Elettronica 10, 45–48 (1998). [Google Scholar]
- P. J. R. Laybourn, M. Sorel, G. Giuliani, and S. Donati, “Integrated semiconductor laser rotation sensors,” Proc. SPIE 3620, 322–331 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, “Proposal of a semiconductor ring laser gyroscope,” Opt. Quant. Electron. 31, 1219–1226 (1999). [CrossRef] [Google Scholar]
- T. Numai, “Analysis of signal voltage in a semiconductor ring laser gyro,” IEEE J. Quantum Elect. 36, 1161–1167 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- M. N. Armenise, M. Armenise, V. M. N. Passaro, F. De Leonardis, “Integrated optical angular velocity sensor,” European Patent EP1219926B1 (2000). [Google Scholar]
- M. Osiński, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006). [CrossRef] [Google Scholar]
- J. Scheuer, “Direct rotation-induced intensity modulation in circular Bragg micro-lasers,” Opt. Express 15, 15053–15059 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- S. Ezekiel, and S. R. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977). [CrossRef] [Google Scholar]
- R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369–1372 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- M. C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19, 13551–13556 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated Si3N4/SiO2 ultra high Q ring resonators,’ in Proceedings to the IEEE Photonics Conference (ICP), 141–142, (IEEE, Burlingame, 2012). [Google Scholar]
- C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing”, in Proceedings to the 13th European Conference on Integrated Optics, WE1 (IEEE, Copenhagen, 2007). [Google Scholar]
- J. T. A. Carriere, J. A. Frantz, S. Honkanen, R. K. Kostuk, B. R. Youmas, and E. A. J. Vikjaer, “An integrated optic gyroscope using ion-exchanged waveguides,” in Proceedings to the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 99–100 (IEEE, Tucson, 2003). [Google Scholar]
- G. Li and K. A. Winick, “Integrated optical ring resonators fabricated by silver ion-exchange in glass”, in Proceedings to the IEEE/OSA Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, CWA63 (Optical Society of America, San Francisco, 2004). [Google Scholar]
- W. Bogaerts, P. de Heyn, T. Van Vaerenbergh, K. de Vos, S. K. Selvaraja, T. Claes, P. Dumon, et al., “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2013). [Google Scholar]
- J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24, 1843–1849 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- F. Dell’Olio, C. Ciminelli, M. N. Armenise, F. M. Soares, and W. Rehbein, “Design, fabrication, and preliminary test results of a new InGaAsP/InP high-Q ring resonator for gyro applications,” in Proceedings to the IEEE International Conference on Indium Phosphide and Related Materials, 124–127 (IEEE, Santa Barbara, 2012). [Google Scholar]
- C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- C. Ciminelli, F. Peluso, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 10.1117/12.590421 (2005). [Google Scholar]
- H. K. Hsiao, and K. A. Winick, “Planar glass waveguide ring resonators with gain,” Opt. Express 15, 17783–17797 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- X. Zhang, and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23603 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- C. Ford, R. Ramberg, K. Johnson, W. Berglund, B. Ellerbusch, R. Schermer, and A. Gopinath, “Cavity element for resonant micro optical gyroscope,” IEEE Aero. El. Sys. Mag. 15, 33–36 (2000). [Google Scholar]
- X. L. Zhang, and K. J. Zhou, “Open-loop experiments of resonator micro-optic gyro,” Optoelectron. Lett. 5, 97–100 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- H. Yu, C. Zhang, L. Feng, Z. Zhou, L. Hong, “SiO2 waveguide resonator used in an integrated optical gyroscope,” Chinese Phys. Lett. 26, 054210 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- L. Guo, B. Shi, C. Chen, and M. Zhao, “A large-size SiO2 waveguide resonator used in integration optical gyroscope,” Optik 123, 302–305 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- M. Zhao, B. R. Shi, C. Chen, L. J. Guo, R. Zhang, Q. Zhang, “Experimental study on resonator micro optic gyroscope,” Proc. SPIE 8191, 10.1117/12.900776 (2011). [Google Scholar]
- K. Iwatsuki, M. Saruwatari, M. Kawachi, and H. Yamazaki, “Waveguide-type optical passive ring-resonator gyro using time-division detection scheme,” Electron. Lett. 25, 688–689 (1989). [NASA ADS] [CrossRef] [Google Scholar]
- H. Ma, Y. Yan, Y. Chen, and Z. Jin, “Improving long-term stability of a resonant micro-optic gyro by reducing polarization fluctuation,” IEEE Photon. J. 4, 2372–2381 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- K. Hotate, K. Takiguchi, A. Hirose, “Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro,” IEEE Photonic. Tech. Lett. 2, 75–77 (1990). [CrossRef] [Google Scholar]
- H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- L. Feng, M. Lei, H. Liu, Y. Zhi, and J. Wang, “Suppression of back-reflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Optics 52, 1668–1675 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- H. Ma, S. Wang, and Z. Jin, “Silica waveguide ring resonators with multi-turn structure,” Opt. Commun. 281, 2509–2512 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- C. Ciminelli, F. Dell’Olio, M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- H. Y. Yu, C. X. Zhang, L. S. Feng, L. F. Hong, and J. J. Wang, “Optical noise analysis in dual-resonator structural micro-optic gyro,” Chinese Phys. Lett. 28, 084203 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optical rotation sensor as well as method of manufacturing an optical rotation sensor,” European Patent EP056933 (2013). [Google Scholar]
- H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photonic. Tech. Lett. 25, 198–201 (2013). [CrossRef] [Google Scholar]
- M. Lei, L. Feng, and Y. Zhi, “Sensitivity improvement of resonator integrated optic gyroscope by double-electrode phase modulation,” Appl. Optics 52, 7214–7219 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, “Quality factor and finesse optimization in buried InGaAsP/InP ring resonators,” J. Europ. Opt. Soc. Rap. Public. 4, 09032 (2009). [CrossRef] [Google Scholar]
- H. Ma, X. Chang, H. Mao, and Z. Jin, “Laser frequency noise limited sensitivity in a resonator optic gyroscope,” in Proceedings to the 15th OptoElectronics and Communications Conference, 706–707 (IEEE, Sapporo, 2010). [Google Scholar]
- Z. Jin, G. Zhang, H. Mao, and H. Ma, “Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor,” Opt. Commun. 285, 645–649 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- C. Peng, Z. Li, and A. Xu, “Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864–3875 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- C. Peng, Z. Li, and A. Xu, “Rotation sensing based on a slow light resonating structure with high group dispersion,” Appl. Optics 46, 4125–4131 (2007). [CrossRef] [Google Scholar]
- J. Scheuer, and A. Yariv, “Sagnac effect in coupled-resonator slowlight waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Zhang, H. Tian, X. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slowlight structure,” Opt. Lett. 35, 691–693 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- M. A. Terrel, M. J. F. Digonnet, and S. Fan “Performance limitations of a coupled resonant optical waveguide gyroscope,” J. Lightwave Technol. 27, 47–54 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- J. R. E. Toland, Z. A. Kaston, C. Sorrentino, and C. P. Search, “Chirped area coupled resonator optical waveguide gyroscope,” Opt. Lett. 36, 1221–1223 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- C. Sorrentino, J. R. E. Toland, and C. P. Search, “Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide,” Opt. Express 20, 354–363 (2011). [Google Scholar]
- C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Europ. Opt. Soc. Rap. Public 8, 13050 (2013). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.