Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14011 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.2971/jeos.2014.14011 | |
Published online | 24 February 2014 |
- D. Williams, A. Andreev, and E. O’Reilly, “Dependence of exciton energy on dot size in GaN/AlN quantum dots,” Phys. Rev. B 73, 241301 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- R. Melnik, and M. Willatzen, “Bandstructures of conical quantum dots with wetting layers,” Nanotechnology 15, 1 (2004). [Google Scholar]
- N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, et al., “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- R. Stevenson, R. Young, P. Atkinson, K. Cooper, D. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006). [CrossRef] [Google Scholar]
- R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- G. Juska, V. Dimastrodonato, L. O. Mereni, A. Gocalinska, and E. Pelucchi, “Towards quantum-dot arrays of entangled photon emitters,” Nat. Photonics 7, 527–531 (2013). [Google Scholar]
- J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, et al., “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, et al., “Optical signatures of coupled quantum dots,” Science 311, 636–639 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- S. Michael, W. W. Chow, and H. C. Schneider, “Group-velocity slowdown in a double quantum dot molecule,” Phys. Rev. B 88, 125305 (2013). [CrossRef] [Google Scholar]
- S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. L. Kerfoot, M. Scheibner, et al., “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- H. R. Hamedi, A. Khaledi-Nasab, and H. Ghaforyan, “Tunneling Control of Transmission Coefficient and Group Index in a Quantum Dot Nanostructure,” Advances in Condensed Matter Physics 2014, 589415 (2014). [CrossRef] [Google Scholar]
- A. Khaledi-Nasab, M. Sabaiean, M. Sahrai, and V. Fallahi, “Optical Rectification and Second Harmonic Generation on Quasi-Realistic InAs/GaAs Quantum Dots: With Attention to Wetting Layer Effect,” ISRN Condensed Matter Physics 2013, 530259 (2013). [CrossRef] [Google Scholar]
- A. Khaledi-Nasab, M. Sabaeian, M. Sahrai, V. Fallahi, and M. Mohammad-Rezaee, “The effect of Woods-Saxon potential on envelope function, intersubband dispersion curves and group velocity of InAs/GaAs quantum dots with wetting layer,” Physica E (2014) article in press. [Google Scholar]
- F. Ponce, and D. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386, 351–359 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- S. Lazar, C. Hébert, and H. Zandbergen, “Investigation of hexagonal and cubic GaN by high-resolution electron energy-loss spectroscopy and density functional theory,” Ultramicroscopy 98, 249–257 (2004). [CrossRef] [Google Scholar]
- F. Widmann, B. Daudin, G. Feuillet, Y. Samson, J. Rouviere, and N. Pelekanos, “Growth kinetics and optical properties of self-organized GaN quantum dots,” J. Appl. Phys. 83, 7618–7624 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- J. Chen, A. Markus, A. Fiore, U. Oesterle, R. Stanley, J. Carlin, R. Houdre, et al., “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 µm applications,” J. Appl. Phys. 91, 6710–6716 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- C. Reaves, R. Pelzel, G. Hsueh, W. Weinberg, and S. DenBaars, “Formation of self-assembled InP islands on a GaInP/GaAs (311) A surface,” Appl. Phys. Lett. 69, 3878–3880 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- M. Hanke, M. Schmidbauer, D. Grigoriev, H. Raidt, P. Schäfer, R. Köhler, A.-K. Gerlitzke, et al., “SiGe/Si (001) Stranski-Krastanow islands by liquid-phase epitaxy: Diffuse x-ray scattering versus growth observations,” Phys. Rev. B 69, 075317 (2004). [CrossRef] [Google Scholar]
- S. Kako, K. Hoshino, S. Iwamoto, S. Ishida, and Y. Arakawa, “Exciton and biexciton luminescence from single hexagonal GaNâŸT AlN self-assembled quantum dots,” Appl. Phys. Lett. 85, 64 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- S. Prabhakar, and R. Melnik, “Influence of electromechanical effects and wetting layers on band structures of AlN/GaN quantum dots and spin control,” J. Appl. Phys. 108,064330–064337 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- K. Kawasaki, D. Yamazaki, A. Kinoshita, H. Hirayama, K. Tsutsui, and Y. Aoyagi, “GaN quantum-dot formation by self-assembling droplet epitaxy and application to single-electron transistors,” Appl. Phys. Lett. 79, 2243–2245 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- K. Hoshino, and Y. Arakawa, “UV photoluminescence from GaN self-assembled quantum dots on AlxGa1âĂŞxN surfaces grown by metalorganic chemical vapor deposition,” Phys. Status Solidi C 1, 2516–2519 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433–7473 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- R. Dingle, D. Sell, S. Stokowski, and M. Ilegems, “Absorption, reflectance, and luminescence of GaN epitaxial layers,” Phys. Rev. B 4, 1211 (1971). [CrossRef] [Google Scholar]
- W. Yim, E. Stofko, P. Zanzucchi, J. Pankove, M. Ettenberg, and S. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44, 292–296 (1973). [CrossRef] [Google Scholar]
- B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10, 676 (1974). [NASA ADS] [CrossRef] [Google Scholar]
- P. Lefebvre, and B. Gayral, “Optical properties of GaN/AlN quantum dots,” C. R. Phys. 9, 816–829 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- L. S. Dang, G. Fishman, H. Mariette, C. Adelmann, E. Martinez-Guerrero, J. Simon, B. Daudin, et al., “GaN quantum dots: Physics and applications,” J. Korean Phys. Soc. 42, 657–661 (2003). [Google Scholar]
- G. Salviati, F. Rossi, N. Armani, V. Grillo, O. Martinez, A. Vinattieri, B. Damilano, et al., “Optical and structural characterization of self-organized stacked GaN/AlN quantum dots,” J. Phys.-Condens. Mat. 16, 115 (2004). [Google Scholar]
- J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, “Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8, 2092–2096 (2008). [Google Scholar]
- V. A. Fonoberov, and A. A. Balandin, “Optical properties of wurtzite and zinc-blende GaN/AlN quantum dots,” J. Vac. Sci. Technol. B 22, 2190–2194 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- N. Skoulidis, V. Vargiamidis, and H. Polatoglou, “Study of the structural and optical properties of GaN/AlN quantum dot superlattices,” Superlattice. Microst. 40, 432–439 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- N. Nuntawong, S. Birudavolu, C. Hains, S. Huang, H. Xu, and D. Huffaker, “Effect of strain-compensation in stacked< equation> 1.3< span style=,” Appl. Phys. Lett. 85, 3050–3052 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- N. Nuntawong, J. Tatebayashi, P. Wong, and D. Huffaker, “Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structures,” Appl. Phys. Lett. 90, 163121 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- H. Zhao, R. A. Arif, Y.-K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaNâĂŞAlGaN quantum wells for lasers and light-emitting diodes,” IEEE J. Quant. Electron. 45, 66–78 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- M. Sabaeian, and A. Khaledi-Nasab, “Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer,” Appl. Optics 51, 4176–4185 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- I. Vurgaftman, and J. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94, 3675–3696 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, and M. Scheffler, “Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN,” Phys. Rev. B 77, 075202 (2008). [CrossRef] [Google Scholar]
- E. Silveira, J. Freitas, M. Kneissl, D. Treat, N. Johnson, G. Slack, and L. Schowalter, “Near-bandedge cathodoluminescence of an AlN homoepitaxial film,” Appl. Phys. Lett. 84, 3501–3503 (2004). [Google Scholar]
- Z. Sitar, M. Paisley, B. Yan, R. Davis, J. Ruan, and J. Choyke, “AlN/GaN superlattices grown by gas source molecular beam epitaxy,” Thin Solid Films 200, 311–320 (1991). [NASA ADS] [CrossRef] [Google Scholar]
- G. Ramirez-Flores, H. Navarro-Contreras, A. Lastras-Martinez, R. Powell, and J. Greene, “Temperature-dependent optical band gap of the metastable zinc-blende structure β-GaN,” Phys. Rev. B 50, 8433 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- H. Okumura, S. Yoshida, and T. Okahisa, “Optical properties near the band gap on hexagonal and cubic GaN,” Appl. Phys. Lett. 64, 2997–2999 (1994). [CrossRef] [Google Scholar]
- L. Chen, B. Skromme, R. Dalmau, R. Schlesser, Z. Sitar, C. Chen, W. Sun, et al., “Band-edge exciton states in AlN single crystals and epitaxial layers,” Appl. Phys. Lett. 85, 4334–4336 (2004). [Google Scholar]
- M. P. Thompson, G. W. Auner, T. S. Zheleva, K. A. Jones, S. J. Simko, and J. N. Hilfiker, “Deposition factors and band gap of zinc-blende AlN,” J. Appl. Phys. 89, 3331–3336 (2001). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.