Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 5, 2010
|
|
---|---|---|
Article Number | 10039s | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2010.10039s | |
Published online | 01 September 2010 |
- G. T. Reed, and A. P. Knights, Silicon Photonics: An Introduction (John Wiley & Sons, New York, 2004). [CrossRef] [Google Scholar]
- A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed optical modulator based on a metal-oxide-semiconductor capacitor” Nature 427, 615–618 (2004). [CrossRef] [PubMed] [Google Scholar]
- D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode” Opt. Express 14, 10838–10843 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- S. M. Weiss, H. Ouyang, J. Zhang, and P. M. Fauchet, “Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals” Opt. Express 13, 1090–1097 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- S. E. Holland, N. W. Wang, and W. W. Moses, “Development of low noise, back-side illuminated silicon photodiode arrays” IEEE T. Nucl. Sci. 44, 443–447 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- B. Shi, P. S. Chang, K. Sun, Y. Xie, C. Radhakrishnan, and H. G. Monbouquette, “Monolithic integrated modulator on silicon for optical interconnects” IEEE Photonic. Tech. L. 19, 55–57 (2007). [CrossRef] [Google Scholar]
- J. F. Du, X. F. Gu, X. F. Huang, J. Zhou, K. J. Chen, H. Chen, J. H. Yang, and B. C. Cao, “Hydrogenated amorphous silicon PIN photodiode for optically addressed spatial light modulators” in Proceedings to the 4th International Solid-State and Integrated Circuit Technology, 733–735 (IEEE, Beijing, 1995). [Google Scholar]
- F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks” Opt. Express 16, 7540–7550 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status” J. Mater. Sci. 18, 15–19 (2007). [Google Scholar]
- B. G. Lewis, and D. C. Paine, “Applications and processing of transparent conducting oxides” MRS Bull. 25, 22–27 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- S. Diplas, A. Ulyashin, K. Maknys, A. E. Gunnaes, S. Jørgensen, D. Wright, J. F. Watts, A. Olsen, and T. G. Finstad, “On the processing–structure–property relationship of ITO layers deposited on crystalline and amorphous Si” Thin Solid Films 515, 8539–8543 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants” Thin Solid Films 313, 394–397 (1998). [CrossRef] [Google Scholar]
- G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics” IEEE J. Sel. Top. Quant. 4, 997–1002 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- S. K. Selvaraja, E. Sleeck, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry” Opt. Commun. 282, 1767–1770 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides” Electron. Lett. 41, 1377–1379 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics” J. Appl. Phys. 92, 649–653 (2002). [CrossRef] [Google Scholar]
- J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassald, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer” Adv. Opt. Technol. 2008, 412518 (2008). [CrossRef] [Google Scholar]
- G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma enhanced chemical-vapor deposition” Opt. Lett. 21, 2002–2004 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- M. Iodice, G. Mazzi, and L. Sirleto, “Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide” Opt. Express 14, 5266–5278 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Lan, and J. Kanicki, “ITO surface ball formation induced by atomic hydrogen in PECVD and HW-CVD tools” Thin Solid Films 304, 123–129 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- R. Banerjee, S. Ray, N. Basu, A. K. Batabyal, and A. K. Barua, “Degradation of tin-doped indium-oxide film in hydrogen and argon plasma” J. Appl. Phys. 62, 912–916 (1987). [CrossRef] [Google Scholar]
- K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultralowloss Si/SiO waveguides by roughness reduction” Opt. Lett. 26, 1888–1890 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- P. Dumon, W. Bogaerts, J. van Campenhout, V. Wiaux, J. Wouters, S. Beckx, and R. Baets, “Low-loss photonic wires and compact ring resonators in silicon-on-insulator” in Proceedings to 2003 IEEE/LEOS Symposium Benelux Chapter, 5–8 (IEEE, Twente, 2003). [Google Scholar]
- S. Kumar, and B. Drevillon, “A real time ellipsometry study of the growth of amorphous silicon on transparent conducting oxides” J. Appl. Physics 65, 3023–3034 (1989). [NASA ADS] [CrossRef] [Google Scholar]
- L. Meng, A. Maqarico, and R. Martins, “Study of annealed indium tin oxide films prepared by RF reactive magnetron sputtering” Vacuum 46, 673–680 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- M. G. Zebaze Kana, E. Centurioni, D. Iencinella, and C. Summonte, “Influence of the sputtering system’s vacuum level on the properties of indium tin oxide films” Thin Solid Films 500, 203–208 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers” Appl. Opt. 44, 7532–7539 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- D. G. Stearns, D. P. Gaines, and D. W. Sweeney, “Nonspecular x-ray scattering in a multilayer-coated imaging system” J. Appl. Phys 84, 1003–1028 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- G. Cancellieri, and U. Ravaioli, Measurements of Optical Fibers and Devices: Theory and Experiments (Artech House, Dedham, 1984). [Google Scholar]
- RSoft Photonics CAD Layout User Guide (RSoft Design Group, Ossining). [Google Scholar]
- W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection” Appl. Opt. 20, 1333–1344 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section” J. Lightwave Technol. 23, 2103–2111 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- R. A. Soref, “Silicon-based optoelectronics” P. IEEE 81, 1687–1706 (1993). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.