EOSAM 2024
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
EOSAM 2024
Article Number 23
Number of page(s) 12
DOI https://doi.org/10.1051/jeos/2025018
Published online 23 May 2025
  1. Ulvila V, Phillips CR, Halonen L, Vainio M, Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities, Opt. Lett. 38, 4281 (2013). https://doi.org/10.1364/ol.38.004281. [Google Scholar]
  2. Ricciardi I, et al. Frequency comb generation in quadratic nonlinear media, Phys. Rev. A. 91, 063839 (2015). https://doi.org/10.1103/physreva.91.063839. [Google Scholar]
  3. Leo F, et al., Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation, Phys. Rev. Lett. 116, 033901 (2016). https://doi.org/10.1103/physrevlett.116.033901. [Google Scholar]
  4. Del’Haye P, Herr T, Gavartin E, Gorodetsky ML, Holzwarth R, Kippenberg TJ, Octave spanning tunable frequency comb from a microresonator, Phys. Rev. Lett. 107, 063901 (2011). https://doi.org/10.1103/physrevlett.107.063901. [Google Scholar]
  5. Herr T, et al., Temporal solitons in optical microresonators, Nat. Photonics. 8, 145 (2013). https://doi.org/10.1038/nphoton.2013.343. [Google Scholar]
  6. Wabnitz S, Suppression of interactions in a phase-locked soliton optical memory, Opt. Lett. 18, 601 (1993). https://doi.org/10.1364/ol.18.000601. [Google Scholar]
  7. Rowley M, et al., Self-emergence of robust solitons in a microcavity, Nature 608, 303 (2022). https://doi.org/10.1038/s41586-022-04957-x. [Google Scholar]
  8. Talenti FR, Sun Y, Parra-Rivas P, Hansson T, Wabnitz S, Control and stabilization of Kerr cavity solitons and breathers driven by chirped optical pulses, Opt. Commun. 546, 129773 (2023). https://doi.org/10.1016/j.optcom.2023.129773. [Google Scholar]
  9. Szabados J, Sturman B, Breunig I, Frequency comb generation threshold via second-harmonic excitation in χ(2) optical microresonators, APL Photonics 5, 116102 (2020). https://doi.org/10.1063/5.0021424. [CrossRef] [Google Scholar]
  10. Bruch AW, Liu X, Surya JB, Zou CL, Tang HX, On-chip χ(2) microring optical parametric oscillator, Optica 6, 1361 (2019). https://doi.org/10.1364/optica.6.001361. [Google Scholar]
  11. Bruch AW, et al., Pockels soliton microcomb, Nat. Photonics 15, 21 (2020). https://doi.org/10.1038/s41566-020-00704-8. [Google Scholar]
  12. Lu J, et al., Two-colour dissipative solitons and breathers in microresonator second-harmonic generation, Nat. Commun. 14, 2798 (2023). https://doi.org/10.1038/s41467-023-38412-w. [Google Scholar]
  13. Coudrat L, Boulliard G, Gérard JM, Lemaître A, Degiron A, Leo G, Unravelling the nonlinear generation of designer vortices with dielectric metasurfaces, Light Sci. Appl. 14, 51 (2025). https://doi.org/10.1038/s41377-025-01741-0. [Google Scholar]
  14. de Ceglia D, et al., Nonlinear spin-orbit coupling in optical thin films, Nat. Commun. 15, 1625 (2024). https://doi.org/10.1038/s41467-024-45607-2. [Google Scholar]
  15. Chopin A, et al., Ultra-efficient generation of time-energy entangled photon pairs in an InGaP photonic crystal cavity, Commun. Phys. 6, 77 (2023). https://doi.org/10.1038/s42005-023-01189-x. [Google Scholar]
  16. Schuhmann J, et al., Hybrid III-V/silicon quantum photonic device generating broadband entangled photon pairs, PRX Quantum. 5, 040321 (2024). https://doi.org/10.1103/prxquantum.5.040321. [Google Scholar]
  17. Pu M, Ottaviano L, Semenova E, Yvind K, Efficient frequency comb generation in AlGaAs-on-insulator, Optica. 3, 823 (2016). https://doi.org/10.1364/optica.3.000823. [Google Scholar]
  18. Chang L, et al., Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators, Nat. Commun. 11, 1331 (2020). https://doi.org/10.1038/s41467-020-15005-5. [Google Scholar]
  19. Marty G, Combrié S, Raineri F, De Rossi A, Photonic crystal optical parametric oscillator, Nat. Photonics. 15, 53 (2020). https://doi.org/10.1038/s41566-020-00737-z. [Google Scholar]
  20. Chopin A, et al., Canonical resonant four-wave-mixing in photonic crystal cavities: tuning, tolerances and scaling, IEEE J. Sel. Top. Quantum Electron. 29, 5100913 (2022). https://doi.org/10.1109/jstqe.2022.3229164. [Google Scholar]
  21. Chang L, et al., Strong frequency conversion in heterogeneously integrated GaAs resonators, APL Photonics 4, 036103 (2019). https://doi.org/10.1063/1.5065533. [CrossRef] [Google Scholar]
  22. Stanton EJ, et al., Efficient second harmonic generation in nanopho tonic GaAs-on-insulator waveguides, Opt. Express. 28, 9521 (2020). https://doi.org/10.1364/oe.389423. [Google Scholar]
  23. Gerini A, et al., Second harmonic generation in monolithic GaAs shallow waveguides, Opt. Express 33, 17560 (2025). https://doi.org/10.1364/OE.540737. [Google Scholar]
  24. Poulvellarie N, et al., Second-harmonic generation enabled by longitudinal electric-field components in photonic wire waveguides, Phys. Rev. A. 102, 023521 (2020). https://doi.org/10.1103/physreva.102.023521. [Google Scholar]
  25. Ciret C, et al., Influence of longitudinal mode components on second harmonic generation in III-V-on-insulator nanowires, Opt. Express 28, 31584 (2020). https://doi.org/10.1364/oe.402150. [Google Scholar]
  26. Poulvellarie N, et al., Efficient type II second harmonic generation in an indium gallium phosphide on insulator wire waveguide aligned with a crystallographic axis, Opt. Lett. 46, 1490 (2021). https://doi.org/10.1364/ol.418064. [Google Scholar]
  27. Pantzas K, et al., Continuous-wave second-harmonic generation in orientation-patterned gallium phosphide waveguides at telecom wavelengths, ACS Photonics 9, 2032 (2022). https://doi.org/10.1021/acsphotonics.2c00156. [Google Scholar]
  28. Akin J, Zhao Y, Misra Y, Haque AKMN, Fang K, InGaP χ(2) integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation, Light Sci. Appl. 13, 290 (2024). https://doi.org/10.1038/s41377-024-01653-5. [Google Scholar]
  29. Gerini A, et al., Electrically injected InGaAsP/AlGaAs optical parametric oscillator: design and technology, J. Opt. Soc. Am. B. 38, B40 (2021). https://doi.org/10.1364/josab.425018. [Google Scholar]
  30. Talenti FR, et al., Frequency comb generation dynamics in χ(2) + χ(3) AlGaAs microresonators, EPJ Web Conf. 309, 08003 (2024). https://doi.org/10.1051/epjconf/202430908003. [Google Scholar]
  31. Talenti FR, et al., Bistable soliton optical frequency combs in a second-harmonic generation Kerr cavity, Opt. Lett. 50, 2037 (2025). https://doi.org/10.1364/OL.551383. [Google Scholar]
  32. Hansson T, Parra-Rivas P, Bernard M, Leo F, Gelens L, Wabnitz S, Quadratic soliton combs in doubly resonant second-harmonic generation, Opt. Lett. 43, 6033 (2018). https://doi.org/10.1364/ol.43.006033. [Google Scholar]
  33. Leo F, et al., Frequency-comb formation in doubly resonant second-harmonic generation, Phys. Rev. A. 93, 043831 (2016). https://doi.org/10.1103/physreva.93.043831. [Google Scholar]
  34. Hansson T, Parra-Rivas P, Wabnitz S, Modeling of dual frequency combs and bistable solitons in third-harmonic generation, Commun. Phys. 6, 59 (2023). https://doi.org/10.1038/s42005-023-01176-2. [Google Scholar]
  35. Trillo S, Wabnitz S, Nonlinear parametric mixing instabilities induced by self-phase and cross-phase modulation, Opt. Lett. 17, 1572 (1992). https://doi.org/10.1364/ol.17.001572. [Google Scholar]
  36. Buryak AV, Trillo S, Kivshar YS, Optical solitons supported by competing nonlinearities, Opt. Lett. 20, 1961 (1995). https://doi.org/10.1364/ol.20.001961. [Google Scholar]
  37. Villois A, Kondratiev N, Breunig I, Puzyrev DN, Skryabin DV, Frequency combs in a microring optical parametric oscillator, Opt. Lett. 44, 4443 (2019). https://doi.org/10.1364/ol.44.004443. [Google Scholar]
  38. Xue X, et al., Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation, Light Sci. Appl. 6, e16253 (2016). https://doi.org/10.1038/lsa.2016.253. [Google Scholar]
  39. Phillips CR, Jankowski M, Flemens N, Fejer MM, General framework for ultrafast nonlinear photonics: unifying single and multi-envelope treatments, Opt. Express. 32, 8284 (2024). https://doi.org/10.1364/oe.513856. [Google Scholar]
  40. Talenti FR, Wabnitz S, Ghorbel I, Combrié S, Aimone-Giggio L, De Rossi A, Fast dispersion tailoring of multimode photonic crystal resonators, Phys. Rev. A. 106, 023505 (2022). https://doi.org/10.1103/physreva.106.023505. [Google Scholar]
  41. De Rossi A, Combrié S, The dawn of chimera optical resonators, Nat. Photonics 18, 112 (2024). https://doi.org/10.1038/s41566-023-01376-w. [Google Scholar]
  42. Moille G, Lu X, Stone J, Westly D, Srinivasan K, Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs, Commun. Phys. 6, 144 (2023). https://doi.org/10.1038/s42005-023-01253-6. [Google Scholar]
  43. Gray D, West GN, Ram RJ, Inverse design for waveguide dispersion with a differentiable mode solver, Optics Express. 32, 30541 (2024). https://doi.org/10.1364/oe.530479. [Google Scholar]
  44. Lucas E, Yu SP, Briles TC, Carlson DR, Papp SB, Tailoring microcombs with inverse-designed, metadispersion microresonators, Nat. Photonics 17, 943 (2023). https://doi.org/10.1038/s41566-023-01252-7. [Google Scholar]
  45. Abolghasem P, Han JB, Kang D, Bijlani BJ, Helmy AS, Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides, IEEE J. Sel. Top. Quantum Electron. 18, 812 (2011). https://doi.org/10.1109/JSTQE.2011.2135841. [Google Scholar]
  46. Kuo PS, Fang W, Solomon GS, Formula -quasi-phase-matched interactions in GaAs microdisk cavities, Opt. Lett. 34, 3580 (2009). https://doi.org/10.1364/ol.34.003580. [Google Scholar]
  47. Morais N, et al., Directionally induced quasi-phase matching in homogeneous AlGaAs waveguides, Opt. Lett. 42, 4287 (2017). https://doi.org/10.1364/ol.42.004287. [Google Scholar]
  48. Ansys (Lumerical Inc, 2000). Available at https://www.lumerical.com/. [Google Scholar]
  49. Agrawal GP, Nonlinear fiber optics (Springer, Berlin, Heidelberg, 2000). [Google Scholar]
  50. Pasquazi A, et al., Micro-combs: A novel generation of optical sources, Phys. Rep. 729, 1 (2018). https://doi.org/10.1016/j.physrep.2017.08.004. [Google Scholar]
  51. Laegsgaard J, Mode profile dispersion in the generalised nonlinear Schrödinger equation, Opt. Express. 15, 16110 (2007). https://doi.org/10.1364/oe.15.016110. [Google Scholar]
  52. Buryak AV, Trapani PD, Skryabin DV, Trillo S, Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep. 370, 63 (2002). https://doi.org/10.1016/s0370-1573(02)00196-5. [CrossRef] [MathSciNet] [Google Scholar]
  53. Hansson T, Wabnitz S, Dynamics of microresonator frequency comb generation: models and stability, Nanophotonics. 5, 231 (2016). https://doi.org/10.1515/nanoph-2016-0012. [Google Scholar]
  54. Dudley JM, Taylor JR, Supercontinuum generation in optical fibers (Cambridge University Press, Cambridge, 2010). [CrossRef] [Google Scholar]
  55. Leuthold J, Koos C, Freude W, Nonlinear silicon photonics, Nat. Photonics. 4, 535 (2010). https://doi.org/10.1038/nphoton.2010.185. [Google Scholar]
  56. Lin Q, Painter OJ, Agrawal GP, Nonlinear optical phenomena in silicon waveguides: modeling and applications, Opt. Express. 15, 16604 (2007). https://doi.org/10.1364/oe.15.016604. [Google Scholar]
  57. Nishi H, Sugiyama H, Kanno E, Segawa T, Wada K, Matsuo S, Second-harmonic-wave assisted octave-spanning supercontinuum generation in an AlGaAs-on-insulator waveguide, in: 2024 IEEE Silicon Photonics Conference (SiPhotonics), 15–18 April, Tokyo Bay, Japan (IEEE, 2024), p. 1. https://doi.org/10.1109/siphotonics60897.2024.10543509. [Google Scholar]
  58. Yu SP, Lucas E, Zang J, Papp SB, A continuum of bright and dark-pulse states in a photonic-crystal resonator, Nat. Commun. 13, 3134 (2022). https://doi.org/10.1038/s41467-022-30774-x. [Google Scholar]
  59. Yu SP, Jung H, Briles TC, Srinivasan K, Papp SB, Photonic-crystal-reflector nanoresonators for kerr-frequency combs, ACS Photonics 6, 2083 (2019). https://doi.org/10.1021/acsphotonics.9b00578. [Google Scholar]
  60. Wildi T, Gaafar MA, Voumard T, Ludwig M, Herr T, Dissipative Kerr solitons in integrated Fabry–Perot microresonators, Optica 10, 650 (2023). https://doi.org/10.1364/optica.480789. [Google Scholar]
  61. Boyd RW, Gaeta AL, Giese E, Nonlinear optics (Springer, New York, 2008). [Google Scholar]
  62. Mobini E, Espinosa DHG, Vyas K, Dolgaleva K, AlGaAs nonlinear integrated photonics, Micromachines 13, 991 (2022). https://doi.org/10.3390/mi13070991. [Google Scholar]
  63. May S, Clerici M, Sorel M, Supercontinuum generation in dispersion engineered AlGaAs-on-insulator waveguides, Sci. Rep. 11, 2052 (2021). https://doi.org/10.1038/s41598-021-81555-3. [Google Scholar]
  64. Halir R, et al., Waveguide sub-wavelength structures: a review of principles and applications, Laser Photonics Rev. 9, 25 (2014). https://doi.org/10.1002/lpor.201400083. [Google Scholar]
  65. Vermeulen N, et al., Post-2000 nonlinear optical materials and measurements: data tables and best practices, J. Phys. Photonics 5, 035001 (2023). https://doi.org/10.1088/2515-7647/ac9e2f. [Google Scholar]
  66. Higgs PW, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13, 508 (1964). https://doi.org/10.1103/physrevlett.13.508. [Google Scholar]
  67. Parisi G, The order parameter for spin glasses: a function on the interval 0–1, J. Phys A: Math. General. 13, 1101 (1980). https://doi.org/10.1088/0305-4470/13/3/042. [Google Scholar]
  68. Massaro LM, et al., Heterogeneous random laser with switching activity visualized by replica symmetry breaking maps, ACS Photonics 8, 376 (2021). https://doi.org/10.1021/acsphotonics.0c01803. [Google Scholar]
  69. Ducci S, Ramazza PL, González-Viñas W, Arecchi FT, Order parameter fragmentation after a symmetry-breaking transition, Phys Rev Lett. 83, 5210 (1999). https://doi.org/10.1103/PhysRevLett.83.5210. [Google Scholar]
  70. Hendry I, et al., Spontaneous symmetry breaking and trapping of temporal Kerr cavity solitons by pulsed or amplitude-modulated driving fields, Phys. Rev. A. 97, 053834 (2018). https://doi.org/10.1103/physreva.97.053834. [Google Scholar]
  71. Butcher JC, A history of Runge-Kutta methods, Appl. Numer. Math. 20, 247 (1996). https://doi.org/10.1016/0168-9274(95)00108-5. [Google Scholar]
  72. Bezanson J, Edelman A, Karpinski S, Shah VB, Julia: A fresh approach to numerical computing, SIAM Rev. 59, 65 (2017). https://doi.org/10.1137/141000671. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.