EOSAM 2024
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
EOSAM 2024
Article Number 22
Number of page(s) 9
DOI https://doi.org/10.1051/jeos/2025020
Published online 21 May 2025
  1. Ghosh G, Sidpara A, Bandyopadhyay PP, Review of several precision finishing processes for optics manufacturing, J. Micromanufact. 1(2), 170–188 (2018). https://doi.org/10.1177/2516598418777315. [Google Scholar]
  2. Guo L, Zhang X, Chen S, et al. An experimental study on the precision abrasive machining process of hard and brittle materials with ultraviolet-resin bond diamond abrasive tools. Materials (Basel, Switzerland) 12, 1 (2019). https://doi.org/10.3390/ma12010125. [Google Scholar]
  3. Löffler-Mang M, Naumann H, Schröder G (Hrsg.), Handbuch Bauelemente der Optik – Grundlagen, Werkstoffe, Geräte, Messtechnik, Hanser (München, 2020). [CrossRef] [Google Scholar]
  4. Kumar S, Tong Z, Jiang X, Advances in the design and manufacturing of novel freeform optics, Int. J. Extreme Manufact. 4, 32004 (2022). https://doi.org/10.1088/2631-7990/ac7617. [Google Scholar]
  5. Brinksmeier E, Mutlugünes Y, Klocke F, et al., Ultra-precision grinding, CIRP Ann. 59(2), 652–671 (2010). https://doi.org/10.1016/j.cirp.2010.05.001. [Google Scholar]
  6. Zhang Z, Yan J, Kuriyagawa T, Manufacturing technologies toward extreme precision, Int. J. Extreme Manufact. 1(2), 22001 (2019). https://doi.org/10.1088/2631-7990/ab1ff1. [Google Scholar]
  7. Schindler K, Kirsten N, Farker M, et al., Werkstoffe, Verfahren und Prüftechnik für Feinoptiker (OptoNet e.V, Jena, 2009). [Google Scholar]
  8. Bliedtner J, Optiktechnologie – Grundlagen – Verfahren – Anwendungen – Beispiele (Carl Hanser Verlag München, 2022). ISBN 978-3-446-46055-3. [CrossRef] [Google Scholar]
  9. Klocke F, Fertigungsverfahren 2 (Springer Berlin, Heidelberg, Berlin, 2017). ISBN 978-3-662-53309-3. [CrossRef] [Google Scholar]
  10. Bifano TG, Bierden PA, Fixed-abrasive grinding of brittle hard-disk substrates, Int. J. Mach. Tools Manuf. 37(7), 935–946 (1997). https://doi.org/10.1016/S0890-6955(96)00089-2. [CrossRef] [Google Scholar]
  11. Li Y, Zheng N, Li H, et al., Morphology and distribution of subsurface damage in optical fused silica parts: Bound-abrasive grinding, Appl. Surface Sci. 257(6), 2066–2073 (2011). https://doi.org/10.1016/j.apsusc.2010.09.051. [Google Scholar]
  12. Yin J, Bai Q, Zhang B, Methods for detection of subsurface damage: a review, Chinese Journal of Mechanical Engineering 31(1), 1–14 (2018). https://doi.org/10.1186/s10033-018-0229-2. [CrossRef] [Google Scholar]
  13. Frank S, Seiler M, Bliedtner J, Three-dimensional evaluation of subsurface damage in optical glasses with ground and polished surfaces using FF-OCT, Appl. Opt. 60(8), 2118 (2021). https://doi.org/10.1364/AO.413090. [CrossRef] [PubMed] [Google Scholar]
  14. Wang J, Li Y, Han J, et al., Evaluating subsurface damage in optical glasses. J. Eur. Opt. Society-Rapid Publ. (2011). https://doi.org/10.2971/jeos.2011.11001. [Google Scholar]
  15. Bleicher F, Brier J, Schwingungsunterstützte Schleifbearbeitung, in: Schweizer Schleif-Symposium (ETH Zürich, 2016). [Google Scholar]
  16. Ion J, Laser processing of engineering materials, (Elsevier/Butterworth-Heinemann, 2005). ISBN 978-0-7506-6079-2. [Google Scholar]
  17. Shahinian H, Zaytsev D, Navare J, et al., Micro Laser Assisted Machining (μ-LAM) of precision optics, in: Design and Fabrication Congress 2019, (Freeform, OFT, 2019). [Google Scholar]
  18. Shahinian H, Navare J, Zaytsev D, Microlaser assisted diamond turning of precision silicon optics, Opt. Eng. 58(9), 1 (2019). https://doi.org/10.1117/1.OE.58.9.092607. [NASA ADS] [CrossRef] [Google Scholar]
  19. Mohammadi H, Patten JA, Laser augmented diamond drilling: a new technique to drill hard and brittle materials, Proc. Manuf. 5, 1337–1347 (2016). https://doi.org/10.1016/j.promfg.2016.08.104. [Google Scholar]
  20. Kong X, et al., Cutting performance and tool wear in laser-assisted grinding of SiCf/SiC ceramic matrix composites, Mater. Res. Express 9, 125601 (2022). https://doi.org/10.1088/2053-1591/aca6c5. [Google Scholar]
  21. Kim M, Bang S, Kim DH, et al., Hybrid CO2 laser-polishing process for improving material removal of silicon carbide, Int. J. Adv. Manuf. Technol. 106, 3139–3151 (2020). https://doi.org/10.1007/s00170-019-04846-0. [Google Scholar]
  22. Chen X, Liu C, Ke J, et al., Subsurface damage and phase transformation in laser-assisted nanometric cutting of single crystal silicon. Mater. Des. 190, 108524 (2020). https://doi.org/10.1016/j.matdes.2020.108524. [Google Scholar]
  23. Chang WL, Luo XC, Zhao QL, et al., Laser assisted micro grinding of high strength materials. Key Eng. Mater. 496, 44–49 (2011). https://doi.org/10.4028/www.scientific.net/KEM.496.44. [Google Scholar]
  24. Yang S, Matthews M, Elhadj S, Cooke D, Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica, Appl. Opt. V 49, 2606–2616 (2010). https://doi.org/10.1364/AO.49.002606. [Google Scholar]
  25. Stover JC, Optical scattering: measurement and analysis, in: International Symposium on Optical Applied Science and Engineering (1991). ISBN 0-8194-0658-9. [Google Scholar]
  26. Ozaki Y, Morisawa Y, Ikehata A, Higashi N, Far-ultraviolet spectroscopy in the solid and liquid states: a review, Appl. Spectrosc. 66 (1), 1–25 (2012). https://doi.org/10.1366/11-06496. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.