EOSAM 2024
Open Access
Review
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
EOSAM 2024
Article Number 25
Number of page(s) 8
DOI https://doi.org/10.1051/jeos/2025023
Published online 27 May 2025
  1. Dunn MH, Ebrahimzadeh M, Parametric generation of tunable light from continuous wave to femtosecond pulses, Science 286, 1513 (1999). https://doi.org/10.1126/science.286.5444.1513. [Google Scholar]
  2. Byer R, Piskarskas A, Feature issue on optical parametric oscillation and amplification, J. Opt. Soc. Am. B 9, 1656 (1993). https://doi.org/10.1364/JOSAB.10.001656. [Google Scholar]
  3. Myers LE, Eckardt RC, Fejer MM, Byer RL, Bosenberg WR, Pierce JW, Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3, Opt. Lett. 20, 52 (1995). https://doi.org/10.1364/OL.20.000052. [Google Scholar]
  4. Armstrong JA, Bloembergen N, Ducuing J, Pershan PS, Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918 (1962). https://doi.org/10.1103/PhysRev.127.1918. [CrossRef] [Google Scholar]
  5. Giordmaine J, Miller R, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett. 14, 973 (1965). https://doi.org/10.1103/PhysRevLett.14.973. [Google Scholar]
  6. Akhmanov SA, Kovrigin A, Piskarskas A, Fadeev V, Khokhlov R, Observation of parametric amplification in the optical range, JETP Lett. 2, 191 (1965). [Google Scholar]
  7. Johnson HR, Backward-wave oscillators, Proc. IRE 43, 684 (1955). https://doi.org/10.1109/JRPROC.1955.278054. [Google Scholar]
  8. Harris SE, Proposed backward wave oscillation in the infrared, Appl. Phys. Lett. 9, 114 (1966). https://doi.org/10.1063/1.1754668. [Google Scholar]
  9. Canalias C, Pasiskevicius V, Mirrorless optical parametric oscillator, Nat. Photonics 1, 459 (2007). https://doi.org/10.1038/nphoton.2007.137. [Google Scholar]
  10. Ding YJ, Khurgin JB, Backward optical parametric oscillators and amplifiers, IEEE J. Quantum Electron. 32, 1574 (1996). https://doi.org/10.1109/3.535361. [Google Scholar]
  11. Webjörn J, Laurell F, Arvidsson G, Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide, IEEE Photonics Technol. Lett. 1, 316 (1989). https://doi.org/10.1109/68.43360. [Google Scholar]
  12. Lim EJ, Fejer MM, Byer RL, Second harmonic generation of green light in a periodically-poled planar lithium niobate waveguide, Electron. Lett. 25, 174 (1989). https://doi.org/10.1049/el:19890495. [Google Scholar]
  13. Van der Poel CJ, Bierlein JD, Brown JB, Colak S, Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides, Appl. Phys. Lett. 57, 2074 (1990). https://doi.org/10.1063/1.103945. [Google Scholar]
  14. Laurell F, Brown JB, Bierlein JD, Sum-frequency generation in segmented KTP waveguides, Appl. Phys. Lett. 60, 1064 (1992). https://doi.org/10.1063/1.106445. [Google Scholar]
  15. Yamada M, Nada N, Saitoh M, Watanabe K, First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation, Appl. Phys. Lett. 62, 435 (1993). https://doi.org/10.1063/1.108925. [Google Scholar]
  16. Karlsson H, Laurell F, Electric field poling of flux grown KTiOPO4, Appl. Phys Letts. 71, 3474 (1997). https://doi.org/10.1063/1.120363. [Google Scholar]
  17. Hirohashi J, Pasiskevicius V, Wang S, Laurell F, Picosecond blue light-induced absorption in single-domain and periodically poled ferroelectrics, J. Appl. Phys. 101, 033105 (2007). https://doi.org/10.1063/1.2434007. [Google Scholar]
  18. Tjörnhammar S, Maestroni V, Zukauskas A, Uždavinys TK, Canalias C, Laurell F, Pasiskevicius V, Infrared absorption in KTP isomorphs induced with blue picosecond pulses, Opt. Mater. Express 5, 2951 (2015). https://doi.org/10.1364/OME.5.002951. [Google Scholar]
  19. Hansson G, Karlsson H, Wang S, Laurell F, Transmission measurements in KTP and isomorphic compounds, Appl. Opt. 39, 5058 (2000). https://doi.org/10.1364/AO.39.005058. [Google Scholar]
  20. Vanherzeele H, Bierlein JD, Magnitude of the nonlinear-optical coefficients of KTiOPO4, Opt. Lett. 17, 982 (1992). https://doi.org/10.1364/OL.17.000982. [Google Scholar]
  21. Zukauskas A, Strömqvist G, Pasiskevicius V, Laurell F, Fokine M, Canalias C, Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP, Opt. Mater. Express 1, 1319 (2011). https://doi.org/10.1364/OME.1.001319. [Google Scholar]
  22. Liljestrand C, Laurell F, Canalias C, Periodic poling of Rb-doped KTiOPO4 by coercive field engineering, Opt. Expr. 24, 14682 (2016). https://doi.org/10.1364/OE.24.014682. [Google Scholar]
  23. Mutter P, Zukauskas A, Canalias C, Domain dynamics in coercive-field engineered sub-μm periodically poled Rb-doped KTiOPO4, Opt. Mater. Expr. 12, 4332 (2022). https://doi.org/10.1364/OME.467806. [Google Scholar]
  24. Coetzee RS, Zukauskas A, Canalias C, Pasiskevicius V, Low-threshold, mid-infrared backward-wave parametric oscillator with periodically poled Rb:KTP, APL Photonics 3, 071302 (2018). https://doi.org/10.1063/1.503549. [Google Scholar]
  25. Kneller J, Flannigan L, Xu C-Q, Design considerations for continuous wave intracavity backwards optical parametric oscillators, Photonics 11, 318 (2024). https://doi.org/10.3390/photonics11040318. [Google Scholar]
  26. Godard A, et al., Backward optical parametric oscillator threshold and linewidth studies, J. Opt. Soc. Am. B 39, 408 (2022). https://doi.org/10.1364/JOSAB.445246. [Google Scholar]
  27. Strömqvist G, Pasiskevicius V, Canalias C, Montes C, Coherent phase-modulation transfer in counterpropagating parametric down-conversion, Phys. Rev. A 84, 023825 (2011). https://doi.org/10.1103/PhysRevA.84.023825. [Google Scholar]
  28. Liljestrand C, Zukauskas A, Pasiskevicius V, Canalias C, Highly efficient mirrorless optical parametric oscillator pumped by nanosecond pulses, Opt. Lett. 42, 2435 (2017). https://doi.org/10.1364/OL.42.002435. [Google Scholar]
  29. Mølster KM, Guionie M, Mutter P, Zheng A, Dherbecourt J-B, Melkonian J-M, Délen X, Zukauskas A, Laurell F, Georges P, Raybaut M, Godard A, Pasiskevicius V, Highly efficient, high average power, narrowband, pump-tunable BWOPO, Opt. Lett. 48, 6484 (2023). https://doi.org/10.1364/OL.506647. [Google Scholar]
  30. Mølster KM, Negri R, Zukauskas A, Lee CSL, Laurell F, Pasiskevicius V, Multi-transversal mode pumping of narrow-bandwidth backward wave optical parametric oscillator, Opt. Express 31, 24320 (2023). https://doi.org/10.1364/OE.494059. [Google Scholar]
  31. Zukauskas A, Viotti A-L, Liljestrand C, Pasiskevicius V, Canalias C, Cascaded counter-propagating nonlinear interactions in highly-efficient sub-μm periodically poled crystals, Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/s41598-017-07016-y. [CrossRef] [Google Scholar]
  32. Mutter P, Zukauskas A, Viotti A-L, Canalias C, Pasiskevicius V, Phase-locked degenerate backward wave optical parametric oscillator, APL Photonics 8, 026104 (2023). https://doi.org/10.1063/5.0135589. [Google Scholar]
  33. Mutter P, Laurell F, Pasiskevicius V, Zukauskas A, Backward wave optical parametric oscillation in a waveguide, npj Nanophoton. 1, 38 (2024). https://doi.org/10.1038/s44310-024-00042-5. [Google Scholar]
  34. Calil Kores C, Canalias C, Laurell F, Quasi-phase matching waveguides on lithium niobate and KTP for nonlinear frequency conversion: a comparison, APL Photonics 6, 091102 (2021). https://doi.org/10.1063/5.0060096. [Google Scholar]
  35. Volk MF, Rüter CE, Kip D, Rb/Ba side-diffused ridge waveguides in KTP, Opt. Express 25, 19872 (2017). https://doi.org/10.1364/OE.25.019872. [Google Scholar]
  36. Jang H, Viotti A-L, Strömqvist G, Zukauskas A, Canalias C, Pasiskevicius V, Counter-propagating parametric interaction with phonon-polaritons in periodically poled KTiOPO4, Opt. Express 25, 2677 (2017). https://doi.org/10.1364/OE.25.002677. [Google Scholar]
  37. Brackett CA, Dense wavelength division multiplexing networks: principles and applications, IEEE J. Sel. Areas Commun. 8, 948 (1990). https://doi.org/10.1109/49.57798. [Google Scholar]
  38. Li G, Recent advances in coherent optical communication, Adv. Opt. Photon. 1, 279 (2009). https://doi.org/10.1364/AOP.1.000279. [Google Scholar]
  39. Christ A, Eckstein A, Mosley PJ, Silberhorn C, Pure single photon generation by type-I PDC with backward-wave amplification, Opt. Express 17, 3441 (2009). https://doi.org/10.1364/OE.17.003441. [Google Scholar]
  40. Gatti A, Corti T, Brambilla E, Temporal coherence and correlation of counterpropagating twin photons, Phys. Rev. A 92, 053809 (2015). https://doi.org/10.1103/PhysRevA.92.053809. [Google Scholar]
  41. Gatti A, Brambilla E, Heralding pure single photons: A comparison between counterpropagating and copropagating twin photons, Phys. Rev. A 97, 013838 (2018). https://doi.org/10.1103/PhysRevA.97.013838. [Google Scholar]
  42. Coetzee RS, Duzellier S, Dherbecourt JB, Zukauskas A, Raybaut M, Pasiskevicius V, Gamma irradiation-induced absorption in single-domain and periodically-poled KTiOPO4 and Rb:KTiOPO4, Opt. Mater. Express 7, 4138 (2017). https://doi.org/10.1364/OME.7.004138. [Google Scholar]
  43. Mølster KM, Duzellier S, Zukauskas A, Lee C, Laurell F, Raybaut M, Pasiskevicius V, Proton irradiation hardness of periodically poled Rb:KTP for spaceborne parametric frequency converters, Opt. Mater. Express 13, 436 (2023). https://doi.org/10.1364/OME.475442. [Google Scholar]
  44. Vågberg A, Brunzell M, Widarsson M, Mutter P, Zukauskas A, Laurell F, Pasiskevicius V, 2.7 μm backward wave optical parametric oscillator source for CO2 spectroscopy, Opt. Lett. 49, 4553 (2024). https://doi.org/10.1364/OL.531038. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.