EOSAM 2024
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
EOSAM 2024
Article Number 7
Number of page(s) 20
DOI https://doi.org/10.1051/jeos/2025002
Published online 20 February 2025
  1. Bunday B, Orji N, Allgair J, High volume manufacturing metrology needs at and beyond the 5 nm node, Proc. SPIE 11611, 116110F (2021). https://doi.org/10.1117/12.2584555. [Google Scholar]
  2. IEEE International Roadmap for Devices, Systems, Metrology (Institute of Electrical and Electronics Engineers, 2023). https://doi.org/10.60627/ff6x-d213. [Google Scholar]
  3. Diebold AC, Antonelli A, Keller N Perspective: optical measurement of feature dimensions and shapes by scatterometry, Apl. Materials. 6, 058201 (2018). https://doi.org/10.1063/1.5018310. [NASA ADS] [CrossRef] [Google Scholar]
  4. Bodermann B, Diener A, Scholze F, Heidenreich S, Soltwisch V, Wurm M, in: Proceedings of Frontiers of Characterization and Metrology for Nanoelectronics, edited by Astratov D Seiler, Z Ma (McDonald B, 2017), p. 70. https://www.nist.gov/sites/default/files/documents/2017/03/22/2017fcmncomplete.pdf. [Google Scholar]
  5. Masters BR, Superresolution optical microscopy. Springer series in optical sciences (Springer, 2020). https://doi.org/10.1007/978-3-030-21691-7. [CrossRef] [Google Scholar]
  6. Rockstuhl C, Marki I, Scharf T, Salt M, Peter Herzig H, Dandliker R, High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale, Curr. Nanosci. 2, 337 (2006). https://doi.org/10.2174/157341306778699383. [NASA ADS] [CrossRef] [Google Scholar]
  7. Zhang T, Ruan Y, Maire G, Sentenac D, Talneau A, Belkebir K, Chaumet PC, Sentenac A, Full-polarized tomographic diffraction microscopy achieves a resolution about one-fourth of the wavelength, Phys. Rev. Lett. 111, 243904 (2013). https://doi.org/10.1103/PhysRevLett.111.243904. [NASA ADS] [CrossRef] [Google Scholar]
  8. Ehret G, Bodermann B, Mirandé W, Quantitative linewidth measurement down to 100 nm by means of optical dark-field microscopy and rigorous model-based evaluation, Meas. Sci. Technol. 18, 430 (2007). https://doi.org/10.1088/0957-0233/18/2/S15. [NASA ADS] [CrossRef] [Google Scholar]
  9. Bodermann B, Ehret G, Endres J, Wurm M, Optical dimensional metrology at Physikalisch-Technische Bundesanstalt (PTB) on deep sub-wavelength nanostructured surfaces, Surf. Topogr. Metrol. Prop. 4, 024014 (2016). https://doi.org/10.1088/2051-672X/4/2/024014. [NASA ADS] [CrossRef] [Google Scholar]
  10. Silver RM, Barnes BM, Attota R, Jun J, Stocker M, Marx E, Patrick HJ, Scatterfield microscopy for extending the limits of image-based optical metrology, Appl. Opt. 46, 4248 (2007). https://doi.org/10.1364/AO.46.004248. [NASA ADS] [CrossRef] [Google Scholar]
  11. Attota R, Silver R, Barnes BM, Optical through-focus technique that differentiates small changes in line width, line height, and sidewall angle for CD, overlay, and defect metrology applications, Proc. SPIE 6922, 146 (2008). https://doi.org/10.1117/12.777205. [Google Scholar]
  12. Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GP, Super-resolution microscopy demystified, Nat. Cell Biol. 21, 72 (2019). https://doi.org/10.1038/s41556-018-0251-8. [CrossRef] [Google Scholar]
  13. V, Label-free super-resolution microscopy (Springer, 2019). https://doi.org/10.1007/978-3-030-21722-8. [Google Scholar]
  14. Gustafsson MG, Agard DA, Sedat JW, Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective-lenses, Proc. SPIE 2412, 147 (1995). https://doi.org/10.1117/12.205334. [CrossRef] [Google Scholar]
  15. Gustafsson MG, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc. 198, 82 (2000). https://doi.org/10.1046/j.1365-2818.2000.00710.x. [CrossRef] [Google Scholar]
  16. Gustafsson MG, Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution, Proc. Natl. Acad. Sci. 102, 13081 (2005). https://doi.org/10.1073/pnas.0406877102. [NASA ADS] [CrossRef] [Google Scholar]
  17. Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG, Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution, Proc. Natl. Acad. Sci. 109, E135 (2012). https://doi.org/10.1073/pnas.1107547108. [Google Scholar]
  18. Hell SW, Wichmann J, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19, 780 (1994). https://doi.org/10.1364/OL.19.000780. [NASA ADS] [CrossRef] [Google Scholar]
  19. Klar TA, Hell SW, Subdiffraction resolution in far-field fluorescence microscopy, Opt. Lett. 24, 954 (1999). https://doi.org/10.1364/OL.24.000954. [NASA ADS] [CrossRef] [Google Scholar]
  20. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF, Imaging intracellular fluorescent proteins at nanometre resolution”, Science 313 (2006) 1642. https://doi.org/10.1126/science.1127344. [CrossRef] [PubMed] [Google Scholar]
  21. Rust MJ, Bates M, Zhuang X, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3, 793 (2006). https://doi.org/10.1038/nmeth929. [CrossRef] [Google Scholar]
  22. https://www.euramet.org/research-innovation/research-empir. [Google Scholar]
  23. https://www.ptb.de/empir2021/polight/home/https://www.euramet.org/research-innovation/search-research-projects/details/project/pushing-boundaries-of-nano-dimensional-metrology-by-light. [Google Scholar]
  24. Rayleigh XXXI. Investigations in optics, with special reference to the spectroscope, London Edinburgh Philos. Mag. & J. Sci. 8, 261 (1879). https://doi.org/10.1080/14786447908639684. [CrossRef] [Google Scholar]
  25. Hansen PE, Pahl T, Fu L, Rømer AT, Rosenthal F, Siaudinyte L, Reichelt S, Lehmann P, Karamehmedović M, Digital twins for 3D confocal microscopy, Proc. SPIE Int. Soc. Opt. Eng. 12997, 12997 (2024). https://doi.org/10.1117/12.3016808. [Google Scholar]
  26. Attota RK, Through-focus or volometric type of imagingin methods: a review, J. Biomed. Opt. 23, 070901 (2018). https://doi.org/10.1117/1.JBO.23.7.070901. [NASA ADS] [CrossRef] [Google Scholar]
  27. Pawley J (Ed.), Handbook of biological confocal microscopy (Plenum, 1995). [CrossRef] [Google Scholar]
  28. Raab M, Jusuk I, Molle J, Buhr E, Bodermann B, Bergmann D, Bosse H, Tinnefeld P, Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures, Sci. Rep. 8, 1780 (2018). https://doi.org/10.1038/s41598-018-19905-x. [CrossRef] [Google Scholar]
  29. Hofmann M, Eggeling C, Jakobs S, Hell SW, Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins, Proc. Natl. Acad. Sci. 102, 17565 (2005). https://doi.org/10.1073/pnas.0506010102. [NASA ADS] [CrossRef] [Google Scholar]
  30. Lu J, Min W, Conchello JA, Xie XS, Lichtman JW, Super-resolution laser scanning microscopy through spatiotemporal modulation, Nano Lett. 9, 3883 (2009). https://doi.org/10.1021/nl902087d. [CrossRef] [Google Scholar]
  31. Käseberg T, Siefke T, Kroker S, Bodermann B, Inverted plasmonic lens design for nanometrology applications, Meas. Sci. Technol. 31, 074013 (2020). https://doi.org/10.1088/1361-6501/ab7e6b. [CrossRef] [Google Scholar]
  32. Karamehmedović M, Scheel K, Listov-Saabye Pedersen F, Villegas A, Hansen PE, Steerable photonic jet for super-resolution microscopy, Opt. Express 30, 41757 (2022). https://doi.org/10.1364/OE.472992. [CrossRef] [Google Scholar]
  33. Parodi V, Jacchetti E, Osellame R, Cerullo G, Polli D, Raimondi MT, Nonlinear optical microscopy: From fundamentals to applications in live bioimaging, Front. Bioeng. Biotechnol. 8, 585363 (2020). https://doi.org/10.3389/fbioe.2020.585363. [CrossRef] [Google Scholar]
  34. Campagnola PJ, Clark HA, Mohler WA, Lewis A, Loew LM, Second-harmonic imaging microscopy of living cells, J. Biomed. Opt. 6, 277 (2001). https://doi.org/10.1117/1.1383294. [NASA ADS] [CrossRef] [Google Scholar]
  35. Rehberg M, Krombach F, Pohl U, Dietzel S, Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy, PLoS One 6, e28237 (2011). https://doi.org/10.1371/journal.pone.0028237. [NASA ADS] [CrossRef] [Google Scholar]
  36. Huttunen MJ, Abbas A, Upham J, Boyd RW, Label-free super-resolution with coherent nonlinear structured-illumination microscopy, J. Opt. 19, 085504 (2017). https://doi.org/10.1088/2040-8986/aa792d. [NASA ADS] [CrossRef] [Google Scholar]
  37. Cheng JX, Xie XS, Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications, J. Phys. Chem. B 108, 827 (2004). https://doi.org/10.1021/jp035693v. [NASA ADS] [CrossRef] [Google Scholar]
  38. Greve M, Bodermann B, Telle HR, Baum P, Riedle E, High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy, Appl. Phys. B 81, 875 (2005). https://doi.org/10.1007/s00340-005-1979-y. [NASA ADS] [CrossRef] [Google Scholar]
  39. Cheng JX, Volkmer A, Xie XS, Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy, J. Opt. Soc. Am. B 19, 1363 (2002) 1375. https://doi.org/10.1364/JOSAB.19.001363. [NASA ADS] [CrossRef] [Google Scholar]
  40. Zhang C, Aldana-Mendoza JA (2021) Coherent Raman scattering microscopy for chemical imaging of biological systems, J. Phys. Photonics 3, 032002. https://doi.org/10.1088/2515-7647/abfd09. [NASA ADS] [CrossRef] [Google Scholar]
  41. Greve M, Bodermann B, Telle HR, Baum P, Riedle E, Gated heterodyne coherent anti-Stokes Raman scattering for high-contrast vibrational imaging, Optical Measurement Systems for Industrial Inspection IV, SPIE 5856, 41 (2005). https://doi.org/10.1117/12.612555. [NASA ADS] [Google Scholar]
  42. Boyd RW, Nonlinear optics, 4th edn (Elsevier, 2020). [Google Scholar]
  43. Park JH, Lee SW, Lee ES, Lee JY, A method for super-resolved CARS microscopy with structured illumination in two dimensions, Opt. Express 22, 9854 (2014). https://doi.org/10.1364/OE.22.009854. [CrossRef] [Google Scholar]
  44. Hajek KM, Littleton B, Turk D, McIntyre TJ, Rubinsztein-Dunlop H, A method for achieving super-resolved widefield CARS microscopy, Opt. Express 18, 19263 (2010). https://doi.org/10.1364/OE.18.019263. [CrossRef] [Google Scholar]
  45. Schwartz O, Levitt JM, Tenne R, Itzhakov S, Deutsch Z, Oron D, Superresolution microscopy with quantum emitters, Nano Lett. 13, 5832 (2013). https://doi.org/10.1021/nl402552m. [CrossRef] [Google Scholar]
  46. Gatto Monticone D, Katamadze K, Traina P, Moreva E, Forneris J, Ruo-Berchera I, Olivero P, Degiovanni IP, Brida G, Genovese M, Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics, Phys. Rev. Lett. 113, 143602 (2014). https://doi.org/10.1103/PhysRevLett.113.143602. [NASA ADS] [CrossRef] [Google Scholar]
  47. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J, Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI), Proc. Natl Acad. Sci. 106, 22287 (2009). https://doi.org/10.1073/pnas.0907866106. [CrossRef] [Google Scholar]
  48. Cevoli D, Vitale R, Vandenberg W, Hugelier S, Van den Eynde R, Dedecker P, Ruckebusch C, Design of experiments for the optimization of SOFI super-resolution microscopy imaging, Biomed. Opt. Express 12, 2617 (2021). https://doi.org/10.1364/boe.421168. [CrossRef] [Google Scholar]
  49. Pawlowska M, Tenne R, Ghosh B, Makowski A, Lapkiewicz R, Embracing the uncertainty: the evolution of SOFI into a diverse family of fluctuation-based super-resolution microscopy methods, J. Phys. Photonics 4, 012002 (2021). https://doi.org/10.1088/2515-7647/ac3838. [Google Scholar]
  50. Classen A, von Zanthier J, Scully MO, Agarwal GS, Superresolution via structured illumination quantum correlation microscopy, Optica 4, 580 (2017). https://doi.org/10.1364/OPTICA.4.000580. [NASA ADS] [CrossRef] [Google Scholar]
  51. Descloux AC, Grußmayer KS, Navikas V, Mahecic D, Manley S, Radenovic A, Experimental combination of super-resolution optical fluctuation imaging with structured illumination microscopy for large fields-of-view, ACS Photonics 8, 2440 (2021). https://doi.org/10.1021/acsphotonics.1c00668. [CrossRef] [Google Scholar]
  52. Tenne R, Rossman U, Rephael B, Israel Y, Krupinski-Ptaszek A, Lapkiewicz R, Silberberg Y, Oron D, Super-resolution enhancement by quantum image scanning microscopy, Nat. Photonics 13, 116 (2019). https://doi.org/10.1038/s41566-018-0324-z. [NASA ADS] [CrossRef] [Google Scholar]
  53. Picariello F, Losero E, Tchernij SD, Boucher P, Genovese M, Ruo-Berchera I, Degiovanni IP, Quantum super-resolution microscopy by photon statistics and structured light, 2024. https://arxiv.org/abs/2408.11654 [Google Scholar]
  54. https://en.wikipedia.org/wiki/RESOLFT. [Google Scholar]
  55. Hell SW, Far-field optical nanoscopy, Science 316, 1153 (2007). https://doi.org/10.1126/science.1137395. [CrossRef] [PubMed] [Google Scholar]
  56. Hanne J, Falk HJ, Görlitz F, Hoyer P, Engelhardt J, Sahl SJ, Hell SW, STED nanoscopy with fluorescent quantum dots, Nat. Commun. 6, 7127 (2014). https://doi.org/10.1038/ncomms8127. [Google Scholar]
  57. Han KY, Willig KI, Rittweger E, Jelezko F, Eggeling C, Hell SW, Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light, Nano Lett. 9, 3323 (2009). https://doi.org/10.1021/nl901597v. [NASA ADS] [CrossRef] [Google Scholar]
  58. Hell SW, Toward fluorescence nanoscopy, Nat. Biotechnol. 21, 1347 (2003). https://doi.org/10.1038/nbt895. [CrossRef] [Google Scholar]
  59. Schermelleh L, Heintzmann R, Leonhardt H, A guide to super-resolution fluorescence microscopy, J. Cell Biol. 190, 165 (2010). https://doi.org/10.1083/jcb.201002018. [Google Scholar]
  60. Rittweger E, Wildanger D, Hell SW, Far-field fluorescence nanoscopy of diamond color centers by ground state depletion, Europhys. Lett. 86, 14001 (2009). https://doi.org/10.1209/0295-5075/86/14001. [NASA ADS] [CrossRef] [Google Scholar]
  61. Fujita K, Kobayashi M, Kawano S, Yamanaka M, Kawata S, High-resolution confocal microscopy by saturated excitation of fluorescence, Phys. Rev. Lett. 99, 228105 (2007). https://doi.org/10.1103/PhysRevLett.99.228105. [NASA ADS] [CrossRef] [Google Scholar]
  62. Jagadale TC, Murali DS, Chu SW, Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by X-scan technique, Beilstein J. Nanotechnol. 10, 2182 (2019). https://doi.org/10.3762/bjnano.10.211. [CrossRef] [Google Scholar]
  63. Chu SW, Wu HY, Huang YT, Su TY, Lee H, Yonemaru Y, Yamanaka M, Oketani R, Kawata S, Shoji S, Fujita K, Saturation and reverse saturation of scattering in a single plasmonic nanoparticle, ACS Photonics 1, 32 (2014). https://doi.org/10.1021/ph4000218. [CrossRef] [Google Scholar]
  64. Lee H, Li KY, Huang YT, Shen PT, Deka G, Oketani R, Yonemaru Y, Yamanaka M, Fujita K, Chu SW, Measurement of scattering nonlinearities from a single plasmonic nanoparticle, J. Vis. Exp. 107, e53338 (2016). https://doi.org/10.3791/53338. [Google Scholar]
  65. Kauranen M, Zayats AV, Nonlinear plasmonics, Nat. Photonics 6, 737 (2012). https://doi.org/10.1038/nphoton.2012.244. [NASA ADS] [CrossRef] [Google Scholar]
  66. Wu HY, Huang YT, Shen PT, Lee H, Oketani R, Yonemaru Y, Yamanaka M, Shoji S, Lin KH, Chang CW, Kawata S, Ultrasmall all-optical plasmonic switch and its application to superresolution imaging, Sci. Rep. 6, 24293 (2016). https://doi.org/10.1038/srep24293. [CrossRef] [Google Scholar]
  67. Hädrich M, Siefke T, Banasch M, Zeitner UD, Optical metasurfaces made by cell projection lithography: Electron beam nanopatterning with high optical quality on large areas, PhotonicsViews 19, 28 (2022). https://doi.org/10.1002/phvs.202200036. [CrossRef] [Google Scholar]
  68. Mazaheri Z, Koral C, Andreone A, Marino A, Terahertz time-domain ellipsometry: tutorial, J. Opt. Soc. Am. A 39, 1420 (2022). https://doi.org/10.1364/josaa.463969. [CrossRef] [Google Scholar]
  69. Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW STED microscopy reveals crystal colour centres with nanometric resolution, Nat. Photonics 3, 144 (2009). https://doi.org/10.1038/nphoton.2009.2. [NASA ADS] [CrossRef] [Google Scholar]
  70. Balasubramanian G, Lazariev A, Arumugam SR, Duan DW, Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing, Curr. Opin. Chem. Biol. 20, 69 (2014). https://doi.org/10.1016/j.cbpa.2014.04.014. [CrossRef] [Google Scholar]
  71. Aprà P, Amine NH, Britel A, Sturari S, Varzi V, Ziino M, Mino L, Olivero P, Picollo F, Creation, control, and modeling of NV centers in nanodiamonds, Adv. Funct. Mater. 34, 2404831 (2014). https://doi.org/10.1002/adfm.202404831. [CrossRef] [Google Scholar]
  72. Aprà P, Ripoll-Sau J, Manzano-Santamaría J, Munuera C, Forneris J, Tchernij SD, Olivero P, Picollo F, Vittone E, Ynsa MD, Structural characterization of 8 MeV 11B implanted diamond, Diam. Relat. Mater. 104, 107770 (2020). https://doi.org/10.1016/j.diamond.2020.107770. [CrossRef] [Google Scholar]
  73. Wang M, Zhang C, Yan S, Chen T, Fang H, Yuan X, Wide-field super-resolved Raman imaging of carbon materials, ACS Photonics 8, 1801 (2021). https://doi.org/10.1021/acsphotonics.1c00392. [CrossRef] [Google Scholar]
  74. Chen H, Wu X, Zhang Y, Yang Y, Min C, Zhu S, Yuan X, Bao Q, Bu J, Wide-field in situ multiplexed Raman imaging with superresolution, Photonics Res. 6, 530 (2018). https://doi.org/10.1364/PRJ.6.000530. [CrossRef] [Google Scholar]
  75. Müller M, Mönkemöller V, Hennig S, Hübner W, Huser T, Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ, Nat. Commun. 7, 10980 (2016). https://doi.org/10.1038/ncomms10980. [CrossRef] [Google Scholar]
  76. Ditalia Tchernij S, Luhmann T, Herzig T, Kupper J, Damin A, Santonocito S, Signorile M, Traina P, Moreva E, Celegato F, Pezzagna S, Single-photon emitters in lead-implanted single-crystal diamond, ACS Photonics 5, 4864 (2018). https://doi.org/10.1021/acsphotonics.8b01013. [CrossRef] [Google Scholar]
  77. Salditt T, Egner A, Luke DR, Nanoscale photonic imaging (Springer Nature, 2020). [CrossRef] [Google Scholar]
  78. Pinhas H, Wagner O, Danan Y, Danino M, Zalevsky Z, Sinvani M, Plasma dispersion effect based super-resolved imaging in silicon, Opt. Express 26, 25370 (2018). https://doi.org/10.1364/OE.26.025370. [NASA ADS] [CrossRef] [Google Scholar]
  79. Tzang O, Pevzner A, Marvel RE, Haglund RF, Cheshnovsky O, Super-resolution in label-free photomodulated reflectivity, Nano Lett. 15, 1362 (2015). https://doi.org/10.1021/nl504640e. [CrossRef] [Google Scholar]
  80. Bundesmann C, Neumann H, Tutorial: The systematics of ion beam sputtering for deposition of thin films with tailored properties, J. Appl. Phys. 124, 231102 (2018). https://doi.org/10.1063/1.5054046. [NASA ADS] [CrossRef] [Google Scholar]
  81. Lazar J, Klapetek P, Valtr M, Hrabina J, Buchta Z, Cip O, Cizek M, Oulehla J, Sery M, Short-range six-axis interferometer controlled positioning for scanning probe microscopy, Sensors 14, 877 (2014). https://doi.org/10.3390/s140100877. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.