Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Article Number 6
Number of page(s) 11
DOI https://doi.org/10.1051/jeos/2025001
Published online 28 January 2025
  1. Morin FJ, Oxides which show a metal-to-insulator transition at the neel temperature, Phys. Rev. Lett. 3, 34 (1959). https://doi.org/10.1103/PhysRevLett.3.34. [NASA ADS] [CrossRef] [Google Scholar]
  2. Nadkami GS, Shirodkar VS, Experiment and theory for switching in Al/V2O5/Al devices, Thin Solid Films 105, 115 (1983). https://doi.org/10.1016/0040-6090(83)90200-6. [NASA ADS] [CrossRef] [Google Scholar]
  3. Beke S, A review of the growth of V2O5 films from 1885 to 2010, Thin Solid Films 519, 1761 (2011). https://doi.org/10.1016/j.tsf.2010.11.001. [CrossRef] [Google Scholar]
  4. Kamper A, Hahndorf I, Baerns M, A molecular mechanics study of the adsorption of ethane and propane on V2O5 (001) surfaces with oxygen vacancies, Top. Catal. 11, 77 (2000). https://doi.org/10.1023/A:1027239612464. [CrossRef] [Google Scholar]
  5. Benmoussa E, Ibnouelghazi A, Bennouna E, Ameziane L, Structral, electrical and optical properties of sputtered vanadium pentoxide thin films, Thin Solid Films 265, 22 (1995). https://doi.org/10.1016/0040-6090(95)06617-9. [NASA ADS] [CrossRef] [Google Scholar]
  6. Margoni M, Mathuri S, Ramamurthi K, Babu RR, Ganesh V, Sethuraman K, Hydrothermally grown nano and microstructured V2O5 thin films for electrochromic application, Appl. Surf. Sci. 449, 193 (2018). https://doi.org/10.1016/j.apsusc.2018.01.288. [NASA ADS] [CrossRef] [Google Scholar]
  7. Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukla AK, V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage, ACS Mater. Lett. 133, 16291 (2011). https://doi.org/10.1021/ja207285b. [Google Scholar]
  8. Altowyan S, Hakami J, Algarni H, Shkir M, Enhancing the optoelectronic properties of V2O5 thin films through Tb doping for photodetector applications, J. Alloy. Compd. 960, 170911 (2023). https://doi.org/10.1016/j.jallcom.2023.170911. [CrossRef] [Google Scholar]
  9. Abbasi M, Rozati SM, Irani R, Beke S, Synthesis and gas sensing behavior of nanostructured V2O5 thin films prepared by spray pyrolysis, Mater. Sci. Semicond. Proc. 29, 132 (2015). https://doi.org/10.1016/j.mssp.2014.01.008. [CrossRef] [Google Scholar]
  10. Schneider K, Maziarz W, V2O5 thin films as nitrogen dioxide sensors, Sensors-Basel 18, 4177 (2018). https://doi.org/10.3390/s18124177. [CrossRef] [Google Scholar]
  11. Minch R, Moonoosawmy KR, Solterbeck CH, Souni M, The influence of processing conditions on the morphology and thermochromic properties of vanadium oxide films, Thin Solid Films 556, 277 (2014). https://doi.org/10.1016/j.tsf.2014.02.049. [NASA ADS] [CrossRef] [Google Scholar]
  12. Yang LL, Ge DT, Zhao JP, Ding YB, Kong XP, Li Y, Improved electrochromic performance of ordered macroporous tungsten oxide films for IR electrochromic device, Sol. Energy Mater. Sol. Cells 100, 251 (2012). https://doi.org/10.1016/j.solmat.2012.01.028. [CrossRef] [Google Scholar]
  13. Zhi MY, Huang WX, Shi QW, Peng B, Ran K, Enhanced electrochromic performance of vanadium pentoxide/reduced graphene oxide nanocomposite film prepared by the sol-gel method, J. Electrochem. Soc. 163, 891 (2016). https://doi.org/10.1149/2.0121610jes. [Google Scholar]
  14. Yang Y, Kim D, Schmuki P, Electrochromic properties of anodically grown mixed V2O5-TiO2 nanotubes, Electrochem. Commun. 13, 1021 (2011). https://doi.org/10.1016/j.elecom.2011.06.001. [CrossRef] [Google Scholar]
  15. Lee K, Cao GZ, Enhancement of intercalation properties of V2O5 film by TiO2 addition, J. Phys. Chem. 109, 11880 (2005). https://doi.org/10.1021/jp044651j. [NASA ADS] [CrossRef] [Google Scholar]
  16. Moura EA, Cholant CM, Balboni RDC, Westphal TM, Lemos RMJ, Azevedo CF, Gündel A, Flores WH, Gomez JA, Ely F, Pawlicka A, Avellaneda CO, Electrochemical properties of thin films of V2O5 doped with TiO2, J. Phys. Chem. Solids 119, 01 (2018). https://doi.org/10.1016/j.jpcs.2018.03.023. [NASA ADS] [CrossRef] [Google Scholar]
  17. Ivanova T, Harizanova A, Electrochromic investigation of sol-gel derived thin films of TiO2–V2O5, Mater. Res. Bull. 40, 411 (2015). https://doi.org/10.1016/j.materresbull.2004.12.007. [Google Scholar]
  18. Rehman I, Hanif MB, Alghamdi AS, Khaliq A, Halim KSA, Subbani T, Motola M, Khan AF, Intrinsic properties of TiO2/V2O5/TiO2 multi-layer coatings prepared via e-beam evaporation, Materials 15, 3933 (2022). https://doi.org/10.3390/ma15113933. [NASA ADS] [CrossRef] [Google Scholar]
  19. Wang Y, Su YR, Qiao L, Liu LX, Su Q, Zhu CQ, Liu XQ, Synthesis of one-dimensional TiO2–V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B, Nanotechnology 22, 225702 (2011). https://doi.org/10.1088/0957-4484/22/22/225702. [NASA ADS] [CrossRef] [Google Scholar]
  20. Sun JJ, Li XY, Zhao QD, Ke J, Zhang DK, Novel TiO2/BiVO4/V2O5 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene, J. Phys. Chem. C 118, 10113 (2014). https://doi.org/10.1021/jp5013076. [NASA ADS] [CrossRef] [Google Scholar]
  21. Gulden PG, Becker D, Vossiek M, Novel optical distance sensor based on MSM technology, IEEE Sens. J. 4, 612 (2004). https://doi.org/10.1109/JSEN.2004.833151. [CrossRef] [Google Scholar]
  22. Thahab SM, Alkhayat AHO, Saleh SM, Influence of substrate type on the structural, optical and electrical properties of CdxZn1-xS MSM thin films prepared by Spray Pyrolysis method, Mater. Sci. Semicond. Proc. 26, 49 (2014). https://doi.org/10.1016/j.mssp.2014.04.005. [CrossRef] [Google Scholar]
  23. Ali GM, Moore JC, Kadhim AK, Thompson C, Electrical and optical effects of Pd microplates embedded in ZnO thin film based MSM UV photodetectors: a comparative study, Sens. Actuat. A Phys. 209, 16 (2014). https://doi.org/10.1016/j.sna.2014.01.010. [CrossRef] [Google Scholar]
  24. Bruno V, Cazzanelli Scaramuzza EN, Strangi G, Ceccato R, Carturan G, Electrical and electro-optical investigations of liquid crystal cells containing TiO2–V2O5 thin films prepared by sol–gel synthesis, J. Appl. Phys. 92, 5340 (2002). http://dx.doi.org/10.1063/1.1513872. [NASA ADS] [CrossRef] [Google Scholar]
  25. Dai WY, Li Y, Yuan Z, Lin K, Mei JC, Zhuang JQ, Yan JY, Wang XP, Zhang HT, He WY, Xue C, Enhanced electrical and optical properties of porous W-doped V2O5 films under thermally and electrically induced phase transition, Infrared Phys. Technol. 137, 105123 (2024). https://doi.org/10.1016/j.infrared.2024.105123. [NASA ADS] [CrossRef] [Google Scholar]
  26. Zhuang JQ, Li Y, Mei JC, Yan JY, Wang XP, Peng C, Wu YD, Zhang X, Zou MD, Dai WY, Yuan Z, Lin K, Study on the optical properties of FTO/W-V2O5/FTO composite film under electric induced phase transition, Opt. Mater. 128, 112430 (2022). https://doi.org/10.1016/j.optmat.2022.112430. [NASA ADS] [CrossRef] [Google Scholar]
  27. Baltakesmez A, Aykac C, Guzeldir B, Phase transition and changing properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique, as a function of tungsten dopant, Appl. Phys. A Mater. Sci. Process. 125, 01 (2019). https://doi.org/10.1007/s00339-019-2736-0. [CrossRef] [Google Scholar]
  28. Zhou LJ, Wei P, Fang HJ, Wu WT, Wu LL, Wang H, Self-doped tungsten oxide films induced by in situ carbothermal reduction for high performance electrochromic devices, J. Mater. Chem. C 8, 13999 (2020). https://doi.org/10.1039/d0tc03103h. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.