Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Using wavefronts: detection and processing
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/jeos/2024045 | |
Published online | 22 January 2025 |
- Nousiannen J, Rajani C, Kasper M, et al., Toward on-sky adaptive optics control using reinforcement learning, Astron. Astrophys. 664(A71), 1 (2022). https://doi.org/10.1051/0004-6361/202243311. [Google Scholar]
- Davies R, Kasper M, Adaptive optics for astronomy, Annu. Rev. Astron. Astrophys. 50, 305. https://doi.org/10.1146/annurev-astro-081811-125447. [Google Scholar]
- Carrizo CE, Calvo RM, Belmonte A, Proof of concept for adaptive sequential optimization of free-space communication receivers, Appl. Opt. 58, 5397 (2019)https://doi.org/10.1364/AO.58.005397. [NASA ADS] [CrossRef] [Google Scholar]
- Carrizo CE, Calvo RM, Belmonte A, Intensity-based adaptive optics with sequential optimization for laser communications, Opt. Express 26, 16044 (2018). https://doi.org/10.1364/OE.26.016044. [NASA ADS] [CrossRef] [Google Scholar]
- Land JE, Aerosol absorption measurement by a Shack-Hartmann wavefront sensor, Appl. Opt. 62, 4836 (2023). https://doi.org/10.1364/AO.492066. [NASA ADS] [CrossRef] [Google Scholar]
- Kalensky M, Kemnetz MR, Spencer MF, Effects of shock waves on Shack-Hartmann wavefront sensor data, AIAA J 61, 2356 (2023). https://doi.org/10.2514/1.J062783. [NASA ADS] [CrossRef] [Google Scholar]
- Hutterer V, Neubauer A, Shatokhina J, A mathematical framework for nonlinear wavefront reconstruction in adaptive optics systems with Fourier-type wavefront sensing, Inverse Probl. 39 (35007), 1 (2023). https://doi.org/10.1088/1361-6420/acb568. [Google Scholar]
- Knapek M, Adaptive optics for the mitigation of atmospheric effects in laser satellite-to-ground communications, Technische Universität München (2010). [Google Scholar]
- Roddier F, Curvature sensing and compensation: a new concept in adaptive optics, Appl. Opt. 27, 1223 (1988). https://doi.org/10.1364/AO.27.001223. [NASA ADS] [CrossRef] [Google Scholar]
- Notaras J, Paterson C, Demonstration of closed-loop adaptive optics with a point-diffraction interferometer in strong scintillation with optical vortices, Opt. Express 15, 13745 (2007). https://doi.org/10.1364/OE.15.013745. [NASA ADS] [CrossRef] [Google Scholar]
- Crepp JR, Letchev SO, Potier SJ, et al., Measuring phase errors in the presence of scintillation, Opt. Express 28, 37721 (2020). https://doi.org/10.1364/OE.408825. [NASA ADS] [CrossRef] [Google Scholar]
- Thornton DE, Spencer MF, Perram GP, Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry with comparisons to the self-referencing interferometer, Appl. Opt. 58, A179 (2019). [NASA ADS] [CrossRef] [Google Scholar]
- Zepp A, Gladysz S, Stein K, et al., Optimization of the holographic wavefront sensor for open-loop adaptive optics under realistic turbulence. Part I: simulations, Appl. Opt. 60, F88 (2021). https://doi.org/10.1364/AO.425397. [NASA ADS] [CrossRef] [Google Scholar]
- Zepp A, Gladysz S, Stein K, et al., Simulation-based design optimization of the holographic wavefront sensor in closed-loop adaptive optics, Light Adv. Manuf. 3, 1 (2022). https://doi.org/10.37188/lam.2022.027. [Google Scholar]
- Branigan E, Zepp A, Martin S, et al., Comparing thin and volume regimes of analog holograms for wavefront sensing, Opt. Express 32, 27239 (2024). https://doi.org/10.1364/OE.527893. [NASA ADS] [CrossRef] [Google Scholar]
- Aubailly M, Vorontsov MA, Scintillation resistant wavefront sensing based on multi-aperture phase reconstruction technique, J. Opt. Soc. Am. A 29, 1707 (2012). https://doi.org/10.1364/JOSAA.29.001707. [Google Scholar]
- Shortt K, Giggenbach D, Calvo RM, et al., Channel characterization for air-to-ground free-space optical communication links, Proc. SPIE 8971(897108), 1 (2014). https://doi.org/10.1117/12.2039834. [Google Scholar]
- Hardy JW, in Adaptive Optics for Astronomical Telescopes, edited by A. Hasegawa (Oxford Univ. Press, New York, 1998). [CrossRef] [Google Scholar]
- Roddier F, Adaptive optics in astronomy, (Cambridge University Press, 2009). https://doi.org/10.1017/CBO9780511525179. [Google Scholar]
- Hampson KM, Žurauskas M, Barbotinand A, et al., Practical implementation of adaptive optical microscopes, Zenodo (2020). https://doi.org/10.5281/zenodo.4080674. [Google Scholar]
- Takeda M, Ina H, Topometry and interferometry by use of a FFT algorithm for fringe pattern analysis, Japanese J. Opt. 10, 476 (1981). https://doi.org/10.11438/kogaku1972.10.476. [Google Scholar]
- Kim J, Fernandez B, Agrawal B, Iterative wavefront reconstruction for strong turbulence using Shack–Hartmann wavefront sensor measurements, J. Opt. Soc. Am. A 38, 456 (2021). https://doi.org/10.1364/JOSAA.413934. [Google Scholar]
- Lamb MP, Correia C, Sauvage JF, et al., Quantifying telescope phase discontinuities external to adaptive optics systems by use of phase diversity and focal plane sharpening, J. Astron. Telesc. Instrum. Syst. 3(39001), 1 (2017). https://doi.org/10.1117/1.JATIS.3.3.039001. [CrossRef] [Google Scholar]
- Sawaf F, Groves RM, Phase discontinuity predictions using a machine-learning trained kernel, Appl. Opt. 53, 5439 (2014). https://doi.org/10.1364/AO.53.005439. [NASA ADS] [CrossRef] [Google Scholar]
- Nyquist H, Certain topics in telegraph transmission theory, Trans. AIEE. 47, 617 (1928). https://doi.org/10.1109/5.989875. [NASA ADS] [Google Scholar]
- Noll RJ, Zernike polynomials and atmospheric turbulence, J. Opt. Soc. Am. 66, 207 (1976). https://doi.org/10.1364/JOSA.66.000207. [NASA ADS] [CrossRef] [Google Scholar]
- Osborn J, Townson MJ, Farley OJD, et al., Adaptive Optics pre-compensated laser uplink to LEO and GEO, Opt. Express 29, 6113 (2021). https://doi.org/10.1364/OE.413013. [NASA ADS] [CrossRef] [Google Scholar]
- Rhoadarmer TA, Development of a self-referencing interferometer wavefront sensor, Proc. SPIE 5553 (2004). Advanced Wavefront Control: Methods, Devices, and Applications II. https://doi.org/10.1117/12.559916. [Google Scholar]
- He Y, Bao M, Chen Y, et al., Accuracy characterization of Shack–Hartmann sensor with residual error removal in spherical wavefront calibration, Light: Adv. Manuf. 31, 1 (2023). https://doi.org/10.37188/lam.2023.036. [Google Scholar]
- Tyson RK, Frazier BW, Field guide to adaptive optics, Second edition, (SPIE Press, 2012). https://doi.org/10.1117/3.923078. [Google Scholar]
- James D, Quantization errors in the fast Fourier transform, IEEE Trans. Acoust. 3, 277 (1975). https://doi.org/10.1109/TASSP.1975.1162687. [CrossRef] [Google Scholar]
- Chang WH, Nguyen TQ, On the fixed-point accuracy analysis of FFT algorithms, IEEE Trans. Signal Process. 56, 4673 (2008). https://doi.org/10.1109/TSP.2008.924637. [Google Scholar]
- Ma Y, An accurate error analysis model for fast Fourier transform, IEEE Trans. Signal Process. 45, 1641 (1997). https://doi.org/10.1109/78.600005. [Google Scholar]
- Paine SW, Fienup JR, Machine learning for improved image-based wavefront sensing, Opt. Lett. 43, 1235 (2018). https://doi.org/10.1364/OL.43.001235. [NASA ADS] [CrossRef] [Google Scholar]
- Guo YM, Zhong LB, Min L, et al., Adaptive optics based on machine learning: a review, Opto-Electron Adv. 5, 200082 (2022). https://doi.org/10.29026/oea.2022.200082. [CrossRef] [Google Scholar]
- Fu H, Wan Z, Li Y, et al., Experimental demonstration of deep-learning-enabled adaptive optics, Phys. Rev. Appl. 22, 034047 (2024). https://doi.org/10.1103/PhysRevApplied.22.034047. [NASA ADS] [CrossRef] [Google Scholar]
- Xu Z, Yang P, Hu K, et al., Deep learning control model for adaptive optics systems, Appl. Opt. 58, 1998 (2019). https://doi.org/10.1364/AO.58.001998. [NASA ADS] [CrossRef] [Google Scholar]
- Tyson RK, Principles of adaptive optics (Academic Press, 1991). https://doi.org/10.1016/B978-0-12-705900-6.X5001-0. [Google Scholar]
- Niu K, Tian C, Zernike Polynomials and their applications, J. Opt. 24(123001), 1 (2022). https://doi.org/10.1088/2040-8986/ac9e08. [Google Scholar]
- Lakshminarayanana V, Fleck A, Zernike polynomials: A guide, J. Mod. Opt. 58, 545 (2011). https://doi.org/10.1080/09500340.2011.554896. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.