EOSAM 2023
Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
EOSAM 2023
Article Number 25
Number of page(s) 9
DOI https://doi.org/10.1051/jeos/2024024
Published online 26 June 2024
  1. Hahn M. (2014) The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study, J. Chem. Biol. 7, 133–141. https://doi.org/10.1007/s12154-014-0113-1. [CrossRef] [Google Scholar]
  2. McGrath M.T. (2001) Fungicide resistance in cucurbit powdery mildew: Experiences and challenges. Plant Dis. 85, 236–245. https://doi.org/10.1094/PDIS.2001.85.3.236. [CrossRef] [Google Scholar]
  3. Coelho S. (2009) European pesticide rules promote resistance, researchers warn, Science 323, 450–450. https://doi.org/10.1126/science.323.5913.450. [CrossRef] [Google Scholar]
  4. Heimbach U., Kral G., Niemann P. (2002) EU regulatory aspects of resistance risk assessment. Pest Manag. Sci. 58, 9, 935–938. https://doi.org/10.1002/ps.538. [CrossRef] [Google Scholar]
  5. McLaughlin R.P., Mason G.S., Miller A.L., Stipe C.B., Kearns J.D., Prier M.W., Rarick J.D. (2016) Note: A portable laser induced breakdown spectroscopy instrument for rapid sampling and analysis of silicon-containing aerosols. Rev. Sci. Instrum. 87, 5. https://doi.org/10.1063/1.4949506. [Google Scholar]
  6. Blank R., Vinayaka P.P., Tahir M.W., Yong J., Vellekoop M.J., Lang W. (2016) Comparison of several optical methods for an automated fungal spore sensor system concept. IEEE Sensors J. 16, 5596–5602. https://doi.org/10.1109/JSEN.2016.2567538. [NASA ADS] [CrossRef] [Google Scholar]
  7. Tahir M.W., Zaidi N.A., Blank R., Vinayaka P.P., Vellekoop M.J., Lang W. (2017) Fungus detection through optical sensor system using two different kinds of feature vectors for the classification. IEEE Sensors J. 17, 5341–5349. https://doi.org/10.1109/JSEN.2017.2723052. [NASA ADS] [CrossRef] [Google Scholar]
  8. Wang Y., Zhang X., Taha M.F., Chen T., Yang N., Zhang J., Mao H. (2023) Detection method of fungal spores based on fingerprint characteristics of diffraction-polarization images. J. Fungi 9, 1131. https://doi.org/10.3390/jof9121131. [CrossRef] [Google Scholar]
  9. Website of Swisens AS, accessed on 28 May 2024, https://www.swisens.ch/en/swisenspoleno-mars. [Google Scholar]
  10. Sauvageat E., Zeder Y., Auderset K., Calpini B., Clot B., Crouzy B., Konzelmann T., Lieberherr G., Tummon F., Vasilatou K. (2020) Real-time pollen monitoring using digital holography. Atmos. Meas. Tech. 13, 1539–1550. https://doi.org/10.5194/amt-13-1539-2020. [NASA ADS] [CrossRef] [Google Scholar]
  11. Wang Y., Mao H., Xu G., Zhang X., Zhang Y. (2022) A rapid detection method for fungal spores from greenhouse crops based on CMOS image sensors and diffraction fingerprint feature processing. J. Fungi 8, 4, 374. https://doi.org/10.3390/jof8040374. [CrossRef] [Google Scholar]
  12. Bradbury S. (1998) Introduction to Light Microscopy, 2nd ed., Bios Scientific Pub Ltd. [Google Scholar]
  13. Compact Aimed Dark Field RL2115. Website of Advanced Illumination, accessed on 28 May 2024, https://www.advancedillumination.com/. [Google Scholar]
  14. Brenner J.F., Dew B.S., Horton J.B., King J.B., Neirath P.W., Sellers W.D. (1971) An automated microscope for cytologic research. J. Histochem. Cytochem. 24, 100–111. [Google Scholar]
  15. Yolov5, Github repository, accessed on 28 May 2024, https://github.com/ultralytics/yolov5. [Google Scholar]
  16. Wang H., Zhang S., Zhao S., Wang Q., Li D., Zhao R. (2022) Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++. Comput. Electron. Agric. 192, 106512. https://doi.org/10.1016/j.compag.2021.106512. [NASA ADS] [CrossRef] [Google Scholar]
  17. Jing Y., Ren Y., Liu Y., Wang D., Yu L. (2022) Automatic extraction of damaged houses by earthquake based on improved YOLOv5: A case study in Yangbi. Remote Sens. 14, 2, 382. https://doi.org/10.3390/rs14020382. [Google Scholar]
  18. Fang Y., Guo X., Chen K., Zhou Z., Ye Q. (2021) Accurate and automated detection of surface knots on sawn timbers using YOLO-V5 model. BioResources 16, 3, 5390–5406. https://doi.org/10.15376/biores.16.3.5390-5406. [CrossRef] [Google Scholar]
  19. Mathew M., Mahesh T.Y. (2022) Leaf-based disease detection in bell pepper plant using YOLO v5. SIViP 16, 841–847. https://doi.org/10.1007/s11760-021-02024-y. [Google Scholar]
  20. Mushtaq F., Ramesh K., Deshmukh S., Ray T., Parimi C., Tandon P., Jha P.K. (2023) Nuts&bolts: YOLO-v5 and image processing based component identification system. Eng. Appl. Artif. Intell. 118, 105665. https://doi.org/10.1016/j.engappai.2022.105665. [CrossRef] [Google Scholar]
  21. Hinds W.C. (1999) Aerosol technology: Properties, behavior, and measurement of airborne particles, John Wiley & Sons. [Google Scholar]
  22. Colbeck I., Lazaridis M. (eds) (2014) Aerosol science: Technology and applications, 1st ed., John Wiley & Sons, New York, pp. 89–118. [Google Scholar]
  23. Chen L., Ghilardi M., Busfield J.J.C., Carpi F. (2021) Electrically tunable lenses: A review. Front. Robot. AI 8, 678046. https://doi.org/10.3389/frobt.2021.678046. [NASA ADS] [CrossRef] [Google Scholar]
  24. Zahir S.A.D.M., Omar A.F., Jamlos M.F., Azmi M.A.M., Muncan J. (2022) A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection. Sens. Actuators A Phys. 338, 113468. [Google Scholar]
  25. Nißler R., Müller A.T., Dohrman F., Kurth L., Li H., Cosio E.G., Flavel B.S., Giraldo J.P., Mithöfer A., Kruss S. (2022) Detection and imaging of the plant pathogen response by near-infrared fluorescent polyphenol sensors. Angew. Chem. Int. Ed. 61, e202108373. [CrossRef] [Google Scholar]
  26. Farber C., Mahnke M., Sanchez L., Kurouski D. (2019) Advanced spectroscopic techniques for plant disease diagnostics. A review. TrAC Trends Anal.l Chem. 118, 43–49. ISSN 0165-9936. [Google Scholar]
  27. Kumar R., Pathak S., Prakash H., Priya U., Ghatak A. (2021) Application of spectroscopic techniques in early detection of fungal plant pathogens, in: Kurouski D. (ed), Diagnostics of Plant Diseases. IntechOpen, London, UK. [Google Scholar]
  28. Khaled A.Y., Abd Aziz S., Bejo S.K., Nawi N.M., Seman I.A., Onwude D.I. (2018) Early detection of diseases in plant tissue using spectroscopy – applications and limitations. Appl. Spectrosc. Rev. 53, 1, 36–64. [CrossRef] [Google Scholar]
  29. Bürling K., Hunsche M., Noga G. (2012) Presymptomatic detection of powdery mildew infection in winter wheat cultivars by laser-induced fluorescence. Appl. Spectrosc. 66, 12, 1411–1419. [CrossRef] [Google Scholar]
  30. Bélanger M.C., Roger J.M., Cartolaro P., Viau A.A., Bellon-Maurel V. (2008) Detection of powdery mildew in grapevine using remotely sensed UV-induced fluorescence. Int. J. Remote Sens. 29, 6, 1707–1724. [CrossRef] [Google Scholar]
  31. Beghi R., Giovenzana V., Brancadoro L., Guidetti R. (2017) Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy. J. Food Eng. 204, 46–54. [CrossRef] [Google Scholar]
  32. H. Pham, Y. Lim, A. Gardi, R.A. Sabatini, Novel Bistatic LIDAR system for early-detection of plant diseases from unmanned aircraft, in: Proceedings of the 31th Congress of the International Council of the Aeronautical Sciences (ICAS 2018), Belo Horizonte, Brazil, 2018. [Google Scholar]
  33. Gordon T.R., Duniway J.M. (1982) Effects of powdery mildew infection on the efficiency of CO2 fixation and light utilization by sugar beet leaves. Plant Physiol. 69, 1, 139–142. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.