Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/jeos/2024025 | |
Published online | 26 June 2024 |
- Balas C. (2009) Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis, Meas. Sci. Technol. 20, 1–12. [Google Scholar]
- Darne C., Lu Y., Sevick-Muraca E.M. (2014) Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update, Phys. Med. Biol. 59, R1–R64. [NASA ADS] [CrossRef] [Google Scholar]
- Ntziachristos V. (2006) Fluorescence molecular imaging, Annu. Rev. Biomed. Eng. 8, 1–33. [CrossRef] [Google Scholar]
- Zhang J., Shi J., Guang H., Zuo S., Liu F., Bai J., Luo J. (2016) Iterative correction scheme based on discrete cosine transform and L1 regularization for fluorescence molecular tomography with background fluorescence, IEEE Trans. Biomed. Eng. 63, 1107–1115. [CrossRef] [Google Scholar]
- Mozumder M., Tarvainen T., Arridge S., Kaipio J.P., D’Andrea C., Kolehmainen V. (2016) Approximate marginalization of absorption and scattering in fluorescence diffuse optical tomography, Inverse Probl. Imag. 10, 227–246. [CrossRef] [Google Scholar]
- Jiang S., Liu J., An Y., Gao Y., Meng H., Wang K., Tian J. (2020) Fluorescence molecular tomography based on group sparsity priori for morphological reconstruction of glioma, IEEE Trans. Biomed. Eng. 67, 1429–1437. [CrossRef] [Google Scholar]
- Lian L., Deng Y., Xie W., Xu G., Yang X., Zhang Z., Luo Q. (2017) Enhancement of the localization and quantitative performance of fluorescence molecular tomography by using linear nBorn method, Opt. Express 25, 2063–2079. [NASA ADS] [CrossRef] [Google Scholar]
- Wang B., Zhang Y., Liu D., Ding X., Dan M., Pan T., Zhao H., Gao F. (2019) Sparsity-regularized approaches to directly reconstructing hemodynamic response in brain functional diffuse optical tomography, Appl. Opt. 58, 863–870. [NASA ADS] [CrossRef] [Google Scholar]
- Cong A., Cong W.X., Lu Y.J., Santago P., Chatziioannou A., Wang G. (2010) Differential evolution approach for regularized bioluminescence tomography, IEEE Trans. Biomed. Eng. 57, 2229–2238. [CrossRef] [Google Scholar]
- Mohajerani P., Ntziachristos V. (2016) Inversion scheme for hybrid fluorescence molecular tomography using a fuzzy inference system, IEEE Trans. Med. Imaging 35, 381–390. [CrossRef] [Google Scholar]
- Kwong T.C., Nouizi F., Lin Y., Cho J., Zhu Y., Sampathkumaran U., Gulsen G. (2017) Experimental evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography, Appl. Opt. 56, 521–529. [NASA ADS] [CrossRef] [Google Scholar]
- An Y., Wang K., Tian J. (2018) Recent methodology advances in fluorescence molecular tomography, Vis. Comput. Ind. Biomed. Art 1, 1–11. [Google Scholar]
- Zou W., Wang J., Feng D.D. (2010) Region-based reconstruction method for fluorescent molecular tomography, J. Opt. Soc. Am. A 27, 2327–2336. [NASA ADS] [CrossRef] [Google Scholar]
- An Y., Liu J., Zhang G., Ye J., Du Y., Mao Y., Chi C., Tian J. (2015) A novel region reconstruction method for fluorescence molecular tomography, IEEE Trans. Biomed. Eng. 62, 1818–1826. [CrossRef] [Google Scholar]
- Wang B., Zhang Y., Liu D., Ding X., Dan M., Pan T., Zhao H., Gao F. (2019) Sparsity-regularized approaches to directly reconstructing hemodynamic response in brain functional diffuse optical tomography, Appl. Opt. 58, 863–870. [NASA ADS] [CrossRef] [Google Scholar]
- Fang E., Wang J., Hu D., Zhang J., Zou W., Zhou Y. (2015) Adaptive monotone fast iterative shrinkage thresholding algorithm for fluorescence molecular tomography, IET Sci. Meas. Technol. 9, 587–595. [CrossRef] [Google Scholar]
- Zhang X., Cao X., Zhu S. (2017) Reconstruction of fluorescence molecular tomography with a cosinoidal level set method, BioMed. Eng. 16, 1–17. [Google Scholar]
- Sun J., Yang B., Koukourakis N., Guck J., Czarske Juergen W. (2024) AI-driven projection tomography with multicore fibre-optic cell rotation, Nat. Commun. 15, 1–11. [Google Scholar]
- Pirone D., Lim J., Merola F., et al. (2022) Stain-free identification of cell nuclei using tomographic phase microscopy in flow cytometry, Nat. Photon. 16, 851–859. [CrossRef] [Google Scholar]
- Joowon L., Ahmed B.A., Demetri P. (2020) Three-dimensional tomography of red blood cells using deep learning, Adv. Photon. 2, 1–9. [Google Scholar]
- Ramos Ruiz A.E., Gürtler J., Kuschmierz R., Czarske J.W. (2019) Measurement of the local sound pressure on a bias-flow liner using high-speed holography and tomographic reconstruction, IEEE Access 7, 153466–153474. [NASA ADS] [CrossRef] [Google Scholar]
- An Y., Liu J., Zhang G., Ye J., Mao Y., Jiang S., Shang W., Du Y., Chi C., Tian J. (2015) Meshless reconstruction method for fluorescence molecular tomography based on compactly supported radial basis function, J. Biomed. Opt. 20, 1–11. [Google Scholar]
- Zou W., Wang J., Hu D., Wang W. (2015) A reconstruction approach in wavelet domain for fluorescent molecular tomography via rotated sources illumination, BiomMed. Eng. OnLine 14, 1–18. [CrossRef] [Google Scholar]
- Arridge S.R., Schotland J.C. (2009) Optical tomography: forward and inverse problems, Inverse Probl. 25, 1–59. [Google Scholar]
- Biswas S.K., Kanhirodan R., Vasu R.M., Roy D. (2012) Practical fully three-dimensional reconstruction algorithms for diffuse optical tomography, J. Opt. Soc. Am. A 29, 1017–1026. [NASA ADS] [CrossRef] [Google Scholar]
- Klose A.D. (2009) Radiative transfer of luminescence light in biological tissue, light scattering reviews 4: Single light scattering and radiative transfer, Springer, Berlin Heidelberg. [Google Scholar]
- Hayashi T., Kashio Y., Okada E. (2003) Hybrid Monte Carlo–diffusion method for light propagation in tissue with a low-scattering region, Appl. Opt. 42, 2888–2896. [NASA ADS] [CrossRef] [Google Scholar]
- Joshi A., Bangerth W., Sevick-Muraca E.M. (2004) Adaptive finite element based tomography for fluorescence optical imaging in tissue, Opt. Express 12, 5402–5417. [NASA ADS] [CrossRef] [Google Scholar]
- Arridge S.R., Hebden J.C. (1997) Optical imaging in medicine: II. Modelling and reconstruction, Phys. Med. Biol. 42, 841–853. [NASA ADS] [CrossRef] [Google Scholar]
- Arridge S.R. (1999) Optical tomography in medical imaging, Inverse Prob. 15, R41–R49. [NASA ADS] [CrossRef] [Google Scholar]
- Arridge S.R., Schweiger M. (1998) A general framework for iterative reconstruction algorithms in optical tomography using a finite element method, in:Computational radiology and imaging: therapy and diagnosis. IMA volumes in mathematics and its applications, Springer. [Google Scholar]
- Gibson A.P., Hebden J.C., Arridge S.R. (2005) Recent advances in diffuse optical imaging, Phys. Med. Biol. 50, R1–R43. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.