EOSAM 2023
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
EOSAM 2023
Article Number 24
Number of page(s) 10
DOI https://doi.org/10.1051/jeos/2024022
Published online 31 May 2024
  1. Duffy J.F., Czeisler C.A. (2009) Effect of light on human circadian physiology, Sleep Med Clin. 4, 2, 165–177. https://doi.org/10.1016/j.jsmc.2009.01.004. [CrossRef] [Google Scholar]
  2. Palczewski K. (2012) Chemistry and biology of vision, J. Biol. Chem. 287, 3, 1612–1619. https://doi.org/10.1074/jbc.R111.301150. [CrossRef] [Google Scholar]
  3. LeGates T.A., Fernandez D.C., Hattar S. (2014) Light as a central modulator of circadian rhythms, sleep and affect, Nat. Rev. Neurosci. 15, 7, 443–454. https://doi.org/10.1038/nrn3743. [Google Scholar]
  4. Hastings M., Reddy A., Maywood E. (2003) A clockwork web: circadian timing in brain and periphery, in health and disease, Nat. Rev. Neurosci. 4, 649–661. https://doi.org/10.1038/nrn1177. [Google Scholar]
  5. Grabe S., Mahammadov E., Olmo M.D., Herzel H. (2022) Synergies of multiple zeitgebers tune entrainment, Front. Netw. Physiol. 1, 803011. https://doi.org/10.3389/fnetp.2021.803011. [CrossRef] [Google Scholar]
  6. Golombek D.A., Rosenstein R.E. (2010) Physiology of circadian entrainment, Physiol Rev. 90, 3, 1063–1102. https://doi.org/10.1152/physrev.00009.2009. [CrossRef] [Google Scholar]
  7. Klerman E.B., Brager A., Carskadon M.A., Depner C.M., Foster R., Goel N., Harrington M., Holloway P.M., Knauert M.P., LeBourgeois M.K., Lipton J., Merrow M., Montagnese S., Ning M., Ray D., Scheer F.A.J.L., Shea S.A., Skene D.J., Spies C., Staels B., St-Onge M.P., Tiedt S., Zee P.C., Burgess H.J. (2022) Keeping an eye on circadian time in clinical research and medicine, Clin Transl Med. 12, 12, e1131. https://doi.org/10.1002/ctm2.1131. [CrossRef] [Google Scholar]
  8. Behar-Cohen F., Martinsons C., Viénot F., Zissis G., Barlier-Salsi A., Cesarini J.P., Enouf O., Garcia M., Picaud S., Attia D. (2011) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog. Retin. Eye Res. 30, 4, 239–257. https://doi.org/10.1016/j.preteyeres.2011.04.002. [CrossRef] [Google Scholar]
  9. Hanifin J.P., Lockley S.W., Cecil K., West K., Jablonski M., Warfield B., James M., Ayers M., Byrne B., Gerner E., Pineda C., Rollag M., Brainard G.C. (2018) Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses, Physiol. Behav. 198, 57–66. https://doi.org/10.1016/j.physbeh.2018.10.004. [Google Scholar]
  10. Menegazzi P., Yoshii T., Helfrich-Förster C. (2012) Laboratory versus nature: the two sides of the Drosophila circadian clock, J. Biol. Rhythms. 27, 6, 433–442. https://doi.org/10.1177/0748730412463181. [CrossRef] [Google Scholar]
  11. Wahl S., Engelhardt M., Schaupp P., Lappe C., Ivanov I.V. (2019) The inner clock-Blue light sets the human rhythm, J. Biophotonics. 12, 12, e201900102. https://doi.org/10.1002/jbio.201900102. [CrossRef] [Google Scholar]
  12. Nash T.R., Chow E.S., Law A.D., Fu S.D., Fuszara E., Bilska A., Bebas P., Kretzschmar D., Giebultowicz J.M. (2019) Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila, NPJ Aging Mech. Dis. 5, 8. https://doi.org/10.1038/s41514-019-0038-6. [Google Scholar]
  13. Ramakrishnan P., Joshi A., Tulasi M., Yadav P. (2023) Monochromatic visible lights modulate the timing of pre-adult developmental traits in Drosophila melanogaster, Photochem. Photobiol. Sci. 22, 4, 867–881. https://doi.org/10.1007/s43630-022-00358-1. [Google Scholar]
  14. Chen X., Leon-Salas W.D., Zigon T., Ready D.F., Weake V.M. (2017) A programmable optical stimulator for the Drosophila eye, HardwareX 2, 13–33. https://doi.org/10.1016/j.ohx.2017.07.001. [CrossRef] [Google Scholar]
  15. Beer K., Helfrich-Förster C. (2020) Model and non-model insects in chronobiology, Front. Behav. Neurosci. 14, 601676. https://doi.org/10.3389/fnbeh.2020.601676. [CrossRef] [Google Scholar]
  16. Huang R.C. (2017) The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel prize in physiology or medicine, Biomed. J. 41, 1, 5–8. https://doi.org/10.1016/j.bj.2018.02.003. [CrossRef] [Google Scholar]
  17. Spitschan M., Stefani O., Blattner P., Gronfier C., Lockley S.W., Lucas R.J. (2019) How to report light exposure in human chronobiology and sleep research experiment, Clocks Sleep. 1, 3, 280–289. https://doi.org/10.3390/clockssleep1030024. [CrossRef] [Google Scholar]
  18. Rosas E., Estrada-Hernández A. (2016) Effect of photometric detector spectral response quality on white LED spectral mismatch correction factors, Appl. Opt. 55, 5267–5272. https://doi.org/10.1364/AO.55.005267. [NASA ADS] [CrossRef] [Google Scholar]
  19. Shen J., Yang P., Luo X., Li H., Xu Y., Shan J., Yang Z., Liang B. (2021) Green light extends Drosophila longevity, Exp. Gerontol. 147, 111268. https://doi.org/10.1016/j.exger.2021.111268. [CrossRef] [Google Scholar]
  20. Helfrich-Förster C. (2020) Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster, J. Comp. Physiol. A 206, 259–272. https://doi.org/10.1007/s00359-019-01379-5. [CrossRef] [Google Scholar]
  21. Shibuya K., Onodera S., Hori M. (2018) Toxic wavelength of blue light changes as insects grow, PLoS One 13, 6, e0199266. https://doi.org/10.1371/journal.pone.0199266. [NASA ADS] [CrossRef] [Google Scholar]
  22. Schlichting M., Menegazzi P., Rosbash M., Helfrich-Förster C. (2019) A distinct visual pathway mediates high-intensity light adaptation of the circadian clock in Drosophila, J. Neurosci. 39, 9, 1621–1630. https://doi.org/10.1523/JNEUROSCI.1497-18.2018. [Google Scholar]
  23. Liu Z., Zhao Z. (2014) Effects of light interruption on sleep and viability of Drosophila melanogaster, PLoS One 9, 8, e105678. https://doi.org/10.1371/journal.pone.0105678. [NASA ADS] [CrossRef] [Google Scholar]
  24. Hall H., Ma J., Shekhar S., Leon-Salas W.D., Weake V.M. (2018) Blue light induces a neuroprotective gene expression program in Drosophila photoreceptors, BMC Neurosci. 19, 1, 43. https://doi.org/10.1186/s12868-018-0443-y. [CrossRef] [Google Scholar]
  25. Vandegehuchte M.B., Janssen C.R. (2011) Epigenetics and its implications for ecotoxicology, Ecotoxicology 20, 3, 607–624. https://doi.org/10.1007/s10646-011-0634-0. [NASA ADS] [CrossRef] [Google Scholar]
  26. Echazú R.D., Cadena C.A., Saravia Mathon L.R. (2000) Estudio de materiales reflectivos para concentradores solares, Avances en Energías Renovables y Medio Ambiente 4, 11–16. [Google Scholar]
  27. Cho E., Oh J.H., Lee E., Do Y.R., Kim E.Y. (2016) Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila, Sci. Rep. 6, 37784. https://doi.org/10.1038/srep37784. [NASA ADS] [CrossRef] [Google Scholar]
  28. Fernández-Moreno M.A., Farr C.L., Kaguni L.S., Garesse R. (2007) Drosophila melanogaster as a model system to study mitochondrial biology, Methods Mol. Biol. 372, 33–49. https://doi.org/10.1007/978-1-59745-365-3_3. [CrossRef] [Google Scholar]
  29. Goda T., Hamada F.N. (2019) Drosophila temperature preference rhythms: An innovative model to understand body temperature rhythm, Int. J. Mol. Sci. 20, 8, 1988. https://doi.org/10.3390/ijms20081988. [CrossRef] [Google Scholar]
  30. Johnson J.C., Munneke A.S., Richardson H.M., Gendron C.M., Pletcher S.D. (2023) Light modulates Drosophila lifespan via perceptual systems independent of circadian rhythms, Aging (Albany NY) 15, 2, 396–420. https://doi.org/10.18632/aging.204472. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.