Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/jeos/2024010 | |
Published online | 18 April 2024 |
- Dubois A., Levecq O., Azimani H., Siret D., Barut A., Suppa M., Del Marmol V., Malvehy J., Cinotti E., Rubegni P., Perrot J.L. (2018) Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors, J. Biomed. Opt. 23, 106007. [CrossRef] [Google Scholar]
- Dubois A., Levecq O., Azimani H., Davis A., Ogien J., Siret D., Barut A. (2018) Line-field confocal time-domain optical coherence tomography with dynamic focusing, Opt. Express 26, 33534–33542. [NASA ADS] [CrossRef] [Google Scholar]
- Ogien J., Levecq O., Azimani H., Dubois A. (2020) Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo, Biomed. Opt. Express 11, 1327–1335. [CrossRef] [Google Scholar]
- Ogien J., Daures A., Cazalas M., Perrot J.-L., Dubois A. (2020) Line-field confocal optical coherence tomography for three-dimensional skin imaging, Front. Optoelectron. 13, 381–392. [CrossRef] [Google Scholar]
- Latriglia F., Ogien J., Tavernier C., Fischman S., Suppa M., Perrot J.L., Dubois A. (2023) Line-field confocal optical coherence tomography (LC-OCT) for skin imaging in dermatology, Life 13, 2268. [NASA ADS] [CrossRef] [Google Scholar]
- Monnier J., Tognetti L., Miyamoto M., Suppa M., Cinotti E., Fontaine M., Perez J., Orte Cano C., Yélamos O., Puig S., Dubois A., Rubegni P., Marmol V., Malvehy J., Perrot J.-L. (2020) In vivo characterization of healthy human skin with a novel, non-invasive imaging technique: line-field confocal optical coherence tomography, J. Eur. Acad. Dermatol. Venereol. 34, 2914–2921. [CrossRef] [Google Scholar]
- Pedrazzani M., Breugnot J., Rouaud-Tinguely P., Cazalas M., Davis A., Bordes S., Dubois A., Closs B. (2020) Comparison of line-field confocal optical coherence tomography images with histological sections: validation of a new method for in vivo and non-invasive quantification of superficial dermis thickness, Skin Res. Technol. 26, 398–404. [CrossRef] [Google Scholar]
- Ruini C., Schuh S., Sattler E., Welzel J. (2021) Line-field confocal optical coherence tomography–practical applications in dermatology and comparison with established imaging methods, Skin Res. Technol. 27, 340–352. [CrossRef] [Google Scholar]
- Ruini C., Schuh S., Gust C., Kendziora B., Frommherz L., French L.E., Hartmann D., Welzel J., Sattler E. (2021) Line-field optical coherence tomography: in vivo diagnosis of basal cell carcinoma subtypes compared with histopathology, Clin. Exp. Dermatol. 46, 1471–1481. [CrossRef] [Google Scholar]
- Suppa M., Fontaine M., Dejonckheere G., Cinotti E., Yélamos O., Diet G., Tognetti L., Miyamoto M., Orte Cano C., Perez-Anker J., Panagiotou V., Trepant A.L., Monnier J., Berot V., Puig S., Rubegni P., Malvehy J., Perrot J.L., del Marmol V. (2021) Line-field confocal optical coherence tomography of basal cell carcinoma: a descriptive study, J. Eur. Acad. Dermatol. Venereol. 35, 1099–1110. [CrossRef] [Google Scholar]
- Donelli C., Suppa M., Tognetti L., Perrot J.L., Calabrese L., Pérez-Anker J., Malvehy J., Rubegni P., Cinotti E. (2023) Line-field confocal optical coherence tomography for the diagnosis of skin carcinomas: real-life data over three years, Curr. Oncol. 30, 8853–8864. [CrossRef] [Google Scholar]
- Cinotti E., Bertello M., Cartocci A., Fiorani D., Tognetti L., Solmi V., Cappilli S., Peris K., Perrot J.L., Suppa M., Del Marmol V., Rubegni P. (2023) Comparison of reflectance confocal microscopy and line-field optical coherence tomography for the identification of keratinocyte skin tumours, Skin Res Technol. 29, e13215. [CrossRef] [Google Scholar]
- Perez-Anker J., Puig S., Alos L., García A., Alejo B., Cinotti E., Orte Cano C., Tognetti L., Lenoir C., Monnier J., Machuca N., Castillo P., Gibert P.R., Rubegni P., Suppa M., Perrot J.L., Del Marmol V., Malvehy J. (2022) Morphological evaluation of melanocytic lesions with three-dimensional line-field confocal optical coherence tomography: correlation with histopathology and reflectance confocal microscopy. A pilot study, Clin. Exp. Dermatol. 47, 2222–2233. [CrossRef] [Google Scholar]
- Dubois A. (2017) Focus defect and dispersion mismatch in full-field optical coherence microscopy, Appl. Opt. 56, D142–D150. [NASA ADS] [CrossRef] [Google Scholar]
- Dubois A., Moneron G., Boccara A.C. (2006) Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region, Opt. Comm. 266, 738–743. [NASA ADS] [CrossRef] [Google Scholar]
- Labiau S., David G., Gigan S., Boccara A.C. (2009) Defocus test and defocus correction in full-field optical coherence tomography, Opt. Lett. 34, 1576–1578. [NASA ADS] [CrossRef] [Google Scholar]
- Safrani A., Abdulhalim I. (2011) Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography, Appl. Opt. 50, 3021–3027. [CrossRef] [Google Scholar]
- Abdulhalim I. (2012) Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography, Ann. Der Physik 524, 787–804. [NASA ADS] [CrossRef] [Google Scholar]
- Hitzenberger C.K., Baumgartner A., Drexler W., Fercher A.F. (1999) Dispersion effects in partial coherence interferometry: Implications for intraocular ranging, J. Biomed. Opt. 4, 144–156. [NASA ADS] [CrossRef] [Google Scholar]
- Dubois A., Grieve K., Moneron G., Lecaque R., Vabre L., Boccara A.C. (2004) Ultrahigh-resolution full-field optical coherence tomography, Appl. Opt. 43, 2874–2882. [NASA ADS] [CrossRef] [Google Scholar]
- Zeylikovich I. (2008) Short coherence length produced by a spatial incoherent source applied for the Linnik-type interferometer, Appl. Opt. 47, 2171–2177. [NASA ADS] [CrossRef] [Google Scholar]
- Abdulhalim I. (2009) Theory for double beam interference microscopes with coherence effects and verification using the linnik microscope, J. Mod. Opt. 48, 279–302. [Google Scholar]
- Lychagov V.V., Ryabukho V.P., Kalyanov A.L., Smirnov I.V. (2012) Polychromatic low-coherence interferometry of stratified structures with digital interferogram recording and processing, J. Opt. A Pure Appl. Opt. 14, 015702. [Google Scholar]
- Federici A., Dubois A. (2015) Full-field optical coherence microscopy with optimized ultra-high spatial resolution, Opt. Lett. 40, 5347–5350. [NASA ADS] [CrossRef] [Google Scholar]
- Schmitt J.M., Kumar G. (1996) Turbulent nature of refractive-index variations in biological tissue, Opt. Lett. 21, 1310–1312. [NASA ADS] [CrossRef] [Google Scholar]
- Tuchin V.V., Utz S.R., Yaroslavsky I.V. (1994) Tissue optics, light distribution, and spectroscopy, Opt. Eng. 33, 3178–3188. [CrossRef] [Google Scholar]
- Tearney G.J., Brezinski M.E., Southern J.F., Bouma B.E., Hee M.R., Fujimoto J.G. (1995) Determination of the refractive index of highly scattering human tissue by optical coherence tomography, Opt. Lett. 20, 2258–2260. [NASA ADS] [CrossRef] [Google Scholar]
- Ding H., Lu J.Q., Wooden W.A., Kragel P.J., Hu X.H. (2006) Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm, Phys. Med. Biol. 51, 1479–1489. [NASA ADS] [CrossRef] [Google Scholar]
- Lai J.C., Zhang Y.Y., Li Z.H., Jiang H.J., He A.Z. (2010) Complex refractive index measurement of biological tissues by attenuated total reflection ellipsometry, Appl. Opt. 49, 3235–3238. [NASA ADS] [CrossRef] [Google Scholar]
- Kono T., Yamada J. (2019) In vivo measurement of optical properties of human skin for 450–800 nm and 950–1600 nm wavelengths, Int. J. Thermophys. 40, 1–14. [NASA ADS] [CrossRef] [Google Scholar]
- The International Association for the Properties of Water and Steam(September 1997). Release on the refractive index of ordinary water substance as a function of wavelength, temperature, and pressure (IAPWS R9-97). http://www.iapws.org/relguide/rindex.pdf [Google Scholar]
- Visser T.D., Oud J.L., Brakenhoff G.J. (1992) Refractive index and axial distance measurements in 3-D microscopy, Optik 90, 17–19. [Google Scholar]
- Hell S., Reiner G., Cremer C., Stelzer E.H.K. (1993) Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169, 391–405. [CrossRef] [Google Scholar]
- Wang X., Zhang C., Zhang L., Xue L., Tian J.-G. (2002) Simultaneous refractive index and thickness measurements of bio-tissue by optical coherence tomography, J. Biomed. Opt. 7, 628–632. [NASA ADS] [CrossRef] [Google Scholar]
- Saleh B.E.A., Teich M.C. (1991) Chapter 3: Beam optics. Fundamentals of photonics, John Wiley & Sons, New York. [CrossRef] [Google Scholar]
- Larkin K.G. (1996) Efficient nonlinear algorithm for envelope detection in white light interferometry, J. Opt. Soc. Am. A 13, 832–843. [CrossRef] [Google Scholar]
- Schneider F., Draheim J., Kamberger R., Wallrabe U. (2009) Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS, Sensors Actuators A: Phys. 151, 95–99. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.