EOSAM 2023
Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
EOSAM 2023
Article Number 27
Number of page(s) 10
DOI https://doi.org/10.1051/jeos/2024021
Published online 26 June 2024
  1. Modjarrad K., Ebnesajjad S. (2014) Handbook of polymer applications in medicine and medical devices, 1st ed., Elsevier, San Diego, CA, USA. [Google Scholar]
  2. Ramakrishna S., Mayer J., Wintermantel E., Leong K.W. (2001) Biomedical applications of polymer-composite materials: A review, Compos. Sci. Technol. 61, 9, 1189–1224. https://doi.org/10.1016/S0266-3538(00)00241-4. [CrossRef] [Google Scholar]
  3. Scholz C. (2017) Polymers for biomedicine: Synthesis, characterization, and applications, 1st ed., John Wiley & Sons, Hoboken, NJ, USA. [CrossRef] [Google Scholar]
  4. Leadbitter J., Day J.A., Ryan J.L. (1997) PVC: Compounds, processing and applications, Rapra Technology Ltd, Shawbury, UK. [Google Scholar]
  5. Maddah H.A. (2016) Polypropylene as a promising plastic: A review, Am. J. Polym. Sci. 6, 1, 1–11. [Google Scholar]
  6. Carr C.M., Clarke D.J., Dobson A.D.W. (2020) Microbial polyethilene terephthalate hydrolases: Current and future perspectives, Front. Microbiol. 11, 1–23. [CrossRef] [Google Scholar]
  7. Zacharatos F., Makrygianni M., Geremina R., Biver E., Karnakis D., Leyder S., Puerto D., Delaporte P., Zergioti I. (2016) Laser direct write micro-fabrication of large area electronics on flexible substrates, Appl. Surf. Sci. 374, 117–123. https://doi.org/10.1016/j.apsusc.2015.10.066. [NASA ADS] [CrossRef] [Google Scholar]
  8. Sun Y., Rogers J.A. (2007) Inorganic semiconductors for flexible electronics, Adv. Mater. 19, 15, 1897–1916. https://doi.org/10.1002/chin.200739224. [NASA ADS] [CrossRef] [Google Scholar]
  9. Xu M., Xue Y., Li J., Zhang L., Lu H., Wang Z. (2023) Large-area and rapid fabrication of a microlens array on flexible substrate for an integral imaging 3D display, ACS Appl. Mater. Interfaces 15, 10219–10227. https://doi.org/10.1021/acsami.2c20519. [CrossRef] [Google Scholar]
  10. Zheng C., Hu A., Kihm K.D., Ma Q., Li R., Chen T., Duley W.W. (2015) Femtosecond laser fabrication ofcavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging, Small 11, 25, 3007–3016. https://doi.org/10.1002/smll.201403419. [Google Scholar]
  11. Puerto D., Biver E., Alloncle A.-P., Delaporte P. (2016) Single step high-speed printing of continuous silver lines by laser-induced forward transfer, Appl. Surf. Sci. 374, 183–189. https://doi.org/10.1016/j.apsusc.2015.11.017. [NASA ADS] [CrossRef] [Google Scholar]
  12. Bollgruen P., Wolfer T., Gleissner U., Mager D., Megnin C., Overmeyer L., Hanemann T., Korvink J.G. (2017) Ink-jet printed optical waveguides, Flex. Print. Electron. 2, 4, 045003. https://doi.org/10.1088/2058-8585/aa8ed6. [CrossRef] [Google Scholar]
  13. Sola D., Vázquez de Aldana J.R., Artal P. (2020) The role of thermal accumulation on the fabrication of diffraction gratings in ophthalmic PHEMA by ultrashort laser direct writing, Polymers 12, 12, 2965. https://doi.org/10.3390/polym12122965. [CrossRef] [Google Scholar]
  14. Suriano R., Kuznetsov A., Eaton S.M., Kiyan R., Cerullo G., Osellame R., Chichkov B.N., Levi M., Turri S. (2011) Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels, Appl. Surf. Sci. 257, 14, 6243–6250. https://doi.org/10.1016/j.apsusc.2011.02.053. [NASA ADS] [CrossRef] [Google Scholar]
  15. Eaton S.M., Zhang H., Herman P.R., Yoshino F., Shah L., Bovatsek J., Arai A.Y. (2005) Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate, Opt. Exp. 13, 12, 4708–4716. https://doi.org/10.1364/opex.13.004708. [CrossRef] [Google Scholar]
  16. Eaton S.M., Zhang H., Ling M., Li J., Chen W.-J., Ho S., Herman P.R. (2008) Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides, Opt. Exp. 16, 13, 9443–9458. https://doi.org/10.1364/oe.16.009443. [NASA ADS] [CrossRef] [Google Scholar]
  17. Lenzner M. (1999) Femtosecond laser-induced damage of dielectrics, Int. J. Mod. Phys. B 13, 13, 1559–1578. https://doi.org/10.1142/s0217979299001570. [NASA ADS] [CrossRef] [Google Scholar]
  18. Stuart B.C., Feit M.D., Rubenchik A.M., Shore B.W., Perry M.D. (1995) Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses, Phys. Rev. Lett. 74, 12, 2248. https://doi.org/10.1103/physrevlett.74.2248. [Google Scholar]
  19. Tien A.-C., Backus S., Kapteyn H., Murnane M., Mourou G. (1999) Short-pulse laser damage in transparent materials as a function of pulse duration, Phys. Rev. Lett. 82, 19, 3883. https://doi.org/10.1103/physrevlett.82.3883. [NASA ADS] [CrossRef] [Google Scholar]
  20. Misawa H., Juodkazis S. (2006) 3D laser microfabrication, Wiley-VCH Verlag, Weinheim, Germany. [CrossRef] [Google Scholar]
  21. Florian C., Fuentes-Edfuf Y., Skoulas E., Stratakis E., Sanchez-Cortes S., Solis J., Siegel J. (2022) Influence of heat accumulation on morphology debris deposition and wetting of LIPSS on steel upon high repetition rate femtosecond pulses irradiation, Materials 15, 17468. https://doi.org/10.3390/ma15217468. [NASA ADS] [CrossRef] [Google Scholar]
  22. Kerse C., Kalaycıoğlu H., Elahi P., Çetin B., Kesim D.K., Akçaalan Ö., Yavaş S., Aşık M.D., Öktem B., Hoogland H., Holzwarth R., Ilday F.Ö. (2016) Ablation-cooled material removal with ultrafast bursts of pulses, Nature 537, 7618, 84–88. https://doi.org/10.1038/nature18619. [CrossRef] [PubMed] [Google Scholar]
  23. Liu X., Du D., Mourou G. (1997) Laser ablation and micromaching with ultrashort laser pulses, IEEE J. Quant. Electron. 33, 10, 1706–1716. https://doi.org/10.1109/3.631270. [NASA ADS] [CrossRef] [Google Scholar]
  24. Schaffer C.B., García J.F., Mazur E. (2003) Bulk heating of transparent materials using a high-repetition-rate femtosecond laser, Appl. Phys. A 76, 351–354. https://doi.org/10.1007/s00339-002-1819-4. [CrossRef] [Google Scholar]
  25. Schaffer C.B., Brodeur A., García J.F., Mazur E. (2001) Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy, Opt. Lett. 26, 2, 93–95. https://doi.org/10.1364/ol.26.000093. [NASA ADS] [CrossRef] [Google Scholar]
  26. Benayas A., Silva W.F., Ródenas A., Jacinto C., Vázquez de Aldana J., Chen F., Tan Y., Thomson R.R., Psaila N.D., Reid D.T., Torchia G.A., Kar A.K., Jaque D. (2011) Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: A study of thermal and non-thermal regimes, Appl. Phys. A 104, 301–309. https://doi.org/10.1007/s00339-010-6135-9. [NASA ADS] [CrossRef] [Google Scholar]
  27. Bauer F., Michalowski A., Kiedrowski T., Nolte S. (2015) Heat accumulation in ultra-short pulsed scanning laser ablation of metals, Opt. Exp. 23, 2, 1035–1043. https://doi.org/10.1364/OE.23.001035. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.