Plasmonica Collection
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
Plasmonica Collection
Article Number 11
Number of page(s) 7
DOI https://doi.org/10.1051/jeos/2024009
Published online 16 April 2024
  1. Xu J., Wu Y., Zhang P., Wu Y., Vallée R.A.L., Wu S., Liu X. (2021) Resonant scattering manipulation of dielectric nanoparticles, Adv. Opt. Mater. 9, 2100112. [CrossRef] [Google Scholar]
  2. Solomon M.L., Abendroth J.M., Poulikakos L.V., Hu J., Dionne J.A. (2020) Fluorescence-detected circular dichroism of a chiral molecular monolayer with dielectric metasurfaces, J. Am. Chem. Soc. 142, 43, 18304–18309. [CrossRef] [Google Scholar]
  3. Kalinic B., Cesca T., Balasa I.G., Trevisani M., Jacassi A., Maier S.A., Sapienza R., Mattei G. (2023) Quasi-BIC modes in all-dielectric slotted nanoantennas for enhanced Er3+ emission, ACS Photonics 10, 2, 534–543. [CrossRef] [PubMed] [Google Scholar]
  4. Shcherbakov M.R., Vabishchevich P.P., Shorokhov A.S., Chong K.E., Choi D., Staude I., Miroshnichenko A.E., Neshev D.N., Fedyanin A.A., Kivshar Y.S. (2015) Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures, Nano Lett. 15, 6985–6990. [NASA ADS] [CrossRef] [Google Scholar]
  5. Carletti L., Locatelli A., Neshev D., De Angelis C. (2016) Shaping the radiation pattern of second-harmonic generation from algaas dielectric nanoantennas, ACS Photonics 3, 8, 1500–1507. [CrossRef] [Google Scholar]
  6. Bahng J.H., Jahani S., Montjoy D.G., Yao T., Kotov N., Marandi A. (2020) Mie resonance engineering in meta-shell supraparticles for nanoscale nonlinear optics, ACS Nano 14, 17203–17212. [CrossRef] [Google Scholar]
  7. Carletti L., Zilli A., Moia F., Toma A., Finazzi M., De Angelis C., Neshev D.N., Celebrano M. (2021) Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface, ACS Photonics 8, 731–737. [CrossRef] [PubMed] [Google Scholar]
  8. Lai Y.-Y., Lan Y.-P., Lu T.-C. (2013) Strong light–matter interaction in ZnO microcavities, Light Sci. Appl. 2, e76. [NASA ADS] [CrossRef] [Google Scholar]
  9. Li H., Tang J., Lin F., Wang D., Fang D., Fang X., Liu W., Chen R., Wei Z. (2019) Improved optical property and lasing of ZnO nanowires by Ar plasma treatment, Nanoscale Res. Lett. 14, 312. [Google Scholar]
  10. Larciprete M.C., Centini M. (2015) Second harmonic generation from ZnO films and nanostructures, Appl. Phys. Rev. 2, 031302. [NASA ADS] [CrossRef] [Google Scholar]
  11. Petronijevic E., Tomczyk M., Belardini A., Osewski P., Piotrowski P., Centini M., Leahu G., Li Voti R., Pawlak D.A., Sibilia C., Larciprete M.C. (2022) Surprising eutectics: enhanced properties of ZnO–ZnWO4 from visible to MIR, Adv. Mater. 35, 34, 2206005. [Google Scholar]
  12. van Embden J., Gross S., Kittilstved K.R., Della Gaspera E. (2023) Colloidal approaches to zinc oxide nanocrystals, Chem. Rev. 123, 1, 271–326. [CrossRef] [Google Scholar]
  13. Lumerical Solutions, Inc. Available at: http://www.lumerical.com/tcadproducts/fdtd/. [Google Scholar]
  14. Aguilar O., de Castro S., Godoy M.P.F., Dias M.R.S. (2019) Optoelectronic characterization of Zn1−xCdxO thin films as an alternative to photonic crystals in organic solar cells, Opt. Mater. Express 9, 3638–3648. [Google Scholar]
  15. Hinamoto T., Fujii M. (2021) MENP: An open-source MATLAB implementation of multipole expansion for nanophotonics, OSA Contin. 4, 5, 1640–1648. [CrossRef] [Google Scholar]
  16. Luk’yanchuk B.S., Voshchinnikov N.V., Paniagua-Domínguez R., Kuznetsov A.I. (2015) Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index, ACS Photonics 2, 7, 993–999. [CrossRef] [Google Scholar]
  17. Lamastra F.R., Grilli M.L., Leahu G., Belardini A., Li Voti R., Sibilia C., Salvatori D., Cacciotti I., Nanni F. (2017) Diatom frustules decorated with zinc oxide nanoparticles for enhanced optical properties, Nanotechnology 28, 375704. [Google Scholar]
  18. Lamastra F.R., Grilli M.L., Leahu G., Belardini A., Li Voti R., Sibilia C., Salvatori D., Cacciotti I., Nanni F. (2018) Photoacoustic spectroscopy investigation of zinc oxide/diatom frustules hybrid powders, Int. J. Thermophys. 39, 110. [NASA ADS] [CrossRef] [Google Scholar]
  19. Osewski P., Belardini A., Petronijevic E., Centini M., Leahu G., Diduszko R., Pawlak D.A., Sibilia C. (2017) Self-phase-matched second-harmonic and white-light generation in a biaxial zinc tungstate single crystal, Sci. Rep. 7, 45247. [NASA ADS] [CrossRef] [Google Scholar]
  20. Das S.K., Bock M., O’Neill C., Grunwald R., Lee K.M., Lee H.W., Lee S., Rotermund F. (2008) Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses, Appl. Phys. Lett. 93, 181112. [CrossRef] [Google Scholar]
  21. Lee W., Yeop J., Heo J., Jin Yoon Y., Yi Park S., Jeong J., Seop Shin Y., Won Kim J., Gyeong An N., Suk Kim D., Park J., Young Kim J. (2020) High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells, Sci. Rep. 10, 18055. [CrossRef] [Google Scholar]
  22. Kilic U., Hilfiker M., Ruder A., Feder R., Schubert E., Schubert M., Argyropoulos C. (2021) Broadband enhanced chirality with tunable response in hybrid plasmonic helical metamaterials, Adv. Funct. Mater. 31, 2010329. [Google Scholar]
  23. González-Rubio G., Mosquera J., Kumar V., Pedrazo-Tardajos A., Llombart P., Solís D.M., Lobato I., Noya E.G., Guerrero-Martínez A., Taboada J.M., Obelleiro F., MacDowell L.G., Bals S., Liz-Marzán L.M. (2020) Micelle-directed chiral seeded growth on anisotropic gold nanocrystals, Science 368, 1472–1477. [CrossRef] [Google Scholar]
  24. Zhuo X., Mychinko M., Heyvaert W., Larios D., Obelleiro-Liz M., Taboada J.M., Bals S., Liz-Marzán L.M. (2022) Morphological and optical transitions during micelle-seeded chiral growth on gold nanorods, ACS Nano 16, 19281–19292. [CrossRef] [Google Scholar]
  25. Leahu G., Petronijevic E., Li Voti R., Belardini A., Cesca T., Mattei G., Sibilia C. (2021) Diffracted beams from metasurfaces: high chiral detectivity by photothermal deflection technique, Adv. Opt. Mater. 9, 21, 2100670. [CrossRef] [Google Scholar]
  26. Petronijevic E., Belardini A., Cesca T., Scian C., Mattei G., Sibilia C. (2021) Rich near-infrared chiral behavior in diffractive metasurfaces, Phys. Rev. Appl. 16, 1, 014003. [CrossRef] [Google Scholar]
  27. Ali H., Petronijevic E., Pellegrini G., Sibilia C., Andreani L.C. (2023) Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice, Opt. Express 31, 9, 14196–14211. [NASA ADS] [CrossRef] [Google Scholar]
  28. Collins J.T., Rusimova K.R., Hooper D.C., Jeong H.-H., Ohnoutek L., Pradeux-Caggiano F., Verbiest T., Carberry D.R., Fisher P., Valev V.K. (2019) First observation of optical activity in hyper-Rayleigh scattering, Phys. Rev. X 9, 1, 011024. [NASA ADS] [Google Scholar]
  29. Ohnoutek L., Kim J.-Y., Lu J., Olohan B.J., Răsădean D.M., Pantoş G.D., Kotov N.A., Valev V.K. (2022) Third harmonic hyper-mie scattering from semiconductor nanohelices, Nat. Photon. 16, 126–133. [Google Scholar]
  30. Ohnoutek L., Jeong H.-H., Jones R.R., Sachs J., Olohan B.J., Răsădean D.M., Pantoş G.D., Andrews D.L., Valev V.K. (2021) Optical activity in third-harmonic Rayleigh scattering: a new route for measuring chirality, Laser Photonic Rev. 15, 11, 2100235. [NASA ADS] [CrossRef] [Google Scholar]
  31. Hou K., Zhao J., Wang H., Li B., Li K., Shi X., Wan K., Ai J., Lv J., Wang D., Huang Q., Wang H., Cao Q., Liu S., Tang Z. (2020) Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease, Nat. Commun. 11, 4790. [Google Scholar]
  32. Xu L., Wang X., Wang W., Sun M., Choi W.J., Kim J.Y., Hao C., Li S., Qu A., Lu M., Wu X. (2022) Enantiomer-dependent immunological response to chiral nanoparticles, Nature 601, 366–373. [NASA ADS] [CrossRef] [Google Scholar]
  33. Passaseo A., Esposito M., Cuscunà M., Tasco V. (2017) Materials and 3D designs of helix nanostructures for chirality at optical frequencies, Adv. Opt. Mater. 5, 1601079. [CrossRef] [Google Scholar]
  34. Petronijevic E., Belardini A., Leahu G., Li Voti R., Sibilia C. (2022) Nanostructured materials for circular dichroism and chirality at the nanoscale: towards unconventional characterization [Invited], Opt. Mater. Express 12, 7, 2426–2937. [Google Scholar]
  35. Jones R.R., Miksch C., Kwon H., Pothoven C., Rusimova K.R., Kamp M., Gong K., Zhang L., Batten T., Smith B., Silhanek A.V., Fischer P., Wolverson D., Valev V.K. (2023) Dense arrays of nanohelices: Raman scattering from achiral molecules reveals the near-field enhancements at chiral metasurfaces, Adv. Mater. 35, 2209282. [NASA ADS] [CrossRef] [Google Scholar]
  36. Sachs J., Günther J., Mark A.G., Fischer P. (2020) Chiroptical spectroscopy of a freely diffusing single nanoparticle, Nat. Commun. 11, 4513. [Google Scholar]
  37. Gao P.X., Ding Y., Mai W., Hughes W.L., Lao C., Wang Z.L. (2005) Conversion of zinc oxide nanobelts into superlattice-structured nanohelices, Science 309, 5741. [Google Scholar]
  38. Ai M., Pan L., Shi C., Huang Z.-F., Zhang X., Mi W., Zou J.-J. (2023) Spin selection in atomic-level chiral metal oxide for photocatalysis, Nat. Commun. 14, 4562. [Google Scholar]
  39. Petronijevic E., Sibilia C. (2019) Enhanced near-field chirality in periodic arrays of Si nanowires for chiral sensing, Molecules 24, 5, 853. [CrossRef] [Google Scholar]
  40. Petronijevic E., Sandoval E.M., Ramezani M., Ordóňez-Romero C.L., Noguez C., Bovino F.A., Sibilia C., Pirruccio G. (2019) Extended chiro-optical near-field response of achiral plasmonic lattices, J. Phys. Chem. C 123, 38, 23620–23627. [CrossRef] [Google Scholar]
  41. Ye L., Li J., Richter F.U., Jahani Y., Lu R., Lee B.R., Tseng M.L., Altug H. (2023) Dielectric tetramer nanoresonators supporting strong superchiral fields for vibrational circular dichroism spectroscopy, ACS Photonics 10, 12, 4377–4384. [NASA ADS] [CrossRef] [Google Scholar]
  42. Goerlitzer E.S.A., Zapata-Herrera M., Ponomareva E., Feller D., Garcia-Etxarri A., Karg M., Aizpurua J., Vogel N. (2023) Molecular-induced chirality transfer to plasmonic lattice modes, ACS Photonics 10, 6, 1821–1831. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.