J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
Special Issue - Plasmonica 2023
Article Number 10
Number of page(s) 7
Published online 15 April 2024
  1. Kim J., Campbell A.S., de Ávila B.E., Wang J. (2019) Wearable biosensors for healthcare monitoring, Nat. Biotechnol. 37, 4, 389–406. [Google Scholar]
  2. Min J., Tu J., Xu C., Lukas H., Shin S., Yang Y., Solomon S.A., Mukasa D., Gao W. (2023) Skin-interfaced wearable sweat sensors for precision medicine, Chem. Rev. 123, 8, 5049–5138. [Google Scholar]
  3. Polykretis P., Banchelli M., D’Andrea C., de Angelis M., Matteini P. (2022) Raman spectroscopy techniques for the investigation and diagnosis of Alzheimer’s disease, Front. Biosci. (Schol. Ed.) 14, 3, 22. [Google Scholar]
  4. Barucci A., D’Andrea C., Farnesi E., Banchelli M., Amicucci C., de Angelis M., Hwang B., Matteini P. (2021) Label-free SERS detection of proteins based on machine learning classification of chemo-structural determinants, Analyst 146, 2, 674–682. [Google Scholar]
  5. Ma H., Tian Y., Jiao A., Wang C., Zhang M., Zheng L., Li S., Chen M. (2022) Silk fibroin-decorated with tunable Au/Ag nanodendrites: A plastic near-infrared SERS substrate with periodic microstructures for ultra-sensitive monitoring of lactic acid in human sweat, Vib. Spectrosc. 118, 103330. [Google Scholar]
  6. Koh E.H., Lee W.C., Choi Y.J., Moon J.I., Jang J., Park S.G., Choo J., Kim D.H., Jung H.S. (2021) A wearable surface-enhanced Raman scattering sensor for label-free molecular detection, ACS Appl. Mater. Interfaces 13, 2, 3024–3032. [Google Scholar]
  7. Lu D., Cai R., Liao Y., You R., Lu Y. (2023) Two-dimensional glass/p-ATP/Ag NPs as multifunctional SERS substrates for label-free quantification of uric acid in sweat, Spectrochim Acta A Mol. Biomol. Spectrosc. 296, 122631. [Google Scholar]
  8. Durai L., Badhulika S. (2022) A wearable PVA film supported TiO2 nanoparticles decorated NaNbO3 nanoflakes-based SERS sensor for simultaneous detection of metabolites and biomolecules in human sweat samples, Adv. Mater. Interfaces 9, 2200146. [Google Scholar]
  9. Liu L., Pancorbo P.M., Xiao T.-H., Noguchi S., Marumi M., Segawa H., Karhadkar S., Gala dePablo J., Hiramatsu K., Kitahama Y., Itoh T., Qu J., Takei K., Goda K. (2022) Highly scalable, wearable surface-enhanced Raman spectroscopy, Adv. Optical Mater. 10, 2200054. [Google Scholar]
  10. Gui X., Xie J., Wang W., Hou B., Min J., Zhai P., Cai L., Tang J., Zhu R., Wu X., Duan J. (2023) Wearable and flexible nanoporous surface-enhanced Raman scattering substrates for sweat enrichment and analysis, ACS Appl. Nano Mater. 6, 11049. [Google Scholar]
  11. Liu Y., Zhang N., Tua D., Zhu Y., Rada J., Yang W., Song H., Thompson A.C., Collins R.L., Gan Q. (2022) Superhydrophobic 3D-assembled metallic nanoparticles for trace chemical enrichment in SERS sensing, Small 18, 2204234. [Google Scholar]
  12. Zhu K., Yang K., Zhang Y., Yang Z., Qian Z., Li N., Li L., Jiang G., Wang T., Zong S., Wu L., Wang Z., Cui Y. (2022) Wearable SERS sensor based on omnidirectional plasmonic nanovoids array with ultra-high sensitivity and stability, Small 18, 2201508. [Google Scholar]
  13. Zhang X., Wang X., Ning M., Wang P., Wang W., Zhang X., Liu Z., Zhang Y., Li S. (2022) Fast synthesis of Au nanoparticles on metal-phenolic network for sweat SERS analysis, Nanomaterials 12, 2977. [Google Scholar]
  14. He X., Fan C., Luo Y., Xu T., Zhang X. (2022) Flexible microfluidic nanoplasmonic sensors for refreshable and portable recognition of sweat biochemical fingerprint, npj Flex Electron 6, 60. [Google Scholar]
  15. Banchelli M., Amicucci C., Ruggiero E., D’Andrea C., Cottat M., Ciofini D., Osticioli I., Ghini G., Siano S., Pini R., de Angelis M. (2019) Spot-on SERS detection of biomolecules with laser-patterned dot arrays of assembled silver nanowires, ChemNanoMat 5, 1036–1043. [Google Scholar]
  16. Sikirzhytski V., Sikirzhytskaya A., Lednev I.K. (2012) Multidimensional Raman spectroscopic signature of sweat and its potential application to forensic body fluid identification, Anal. Chim. Acta 718, 78–83. [Google Scholar]
  17. Moore T.J., Sharma B. (2020) Direct surface enhanced Raman spectroscopic detection of cortisol at physiological concentrations, Anal Chem. 92, 2, 2052. [Google Scholar]
  18. Altun A.O., Bond T., Pronk W., Park H.G. (2017) Sensitive detection of competitive molecular adsorption by surface-enhanced Raman spectroscopy, Langmuir 33, 28, 6999. [Google Scholar]
  19. Chowdhury M.H., Gant V.A., Trache A., Baldwin A., Meininger G.A., Coté G.L. (2006) Use of surface-enhanced Raman spectroscopy for the detection of human integrins, J. Biomed. Opt. 11, 2, 024004. [Google Scholar]
  20. Haes A.J., Van Duyne R.P. (2002) A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc. 124, 35, 10596. [Google Scholar]
  21. Muehlig A., Jahn I.J., Heidler J., Jahn M., Weber K., Sheen P., Zimic M., Cialla-May D., Popp J. (2019) Molecular specific and sensitive detection of pyrazinamide and its metabolite pyrazinoic acid by means of surface enhanced Raman spectroscopy employing in situ prepared colloids, Appl. Sci. 9, 12, 2511. [Google Scholar]
  22. Huang Y., Liu W., Wang D., Gong Z., Fan M. (2020) Evaluation of the intrinsic pH sensing performance of surface-enhanced Raman scattering pH probes, Microchem. J. 154, 104565. [Google Scholar]
  23. Chung M., Skinner W.H., Robert C., Campbell C.J., Rossi R.M., Koutsos V., Radacsi N. (2021) Fabrication of a wearable flexible sweat pH sensor based on SERS-active Au/TPU electrospun nanofibers, ACS Appl. Mater. Interfaces 13, 51504. [Google Scholar]
  24. Ocean Insight Company. Available at: [Google Scholar]
  25. Silmeco Company. Available at: [Google Scholar]
  26. Nikalyte Company. Available at: [Google Scholar]
  27. SERSitive Company. Available at: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.