Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
Article Number 8
Number of page(s) 13
DOI https://doi.org/10.1051/jeos/2024005
Published online 01 April 2024
  1. Yakubovsky D.I., Arsenin A.V., Stebunov Y.V., Fedyanin D.Y., Volkov V.S. (2017) Optical constants and structural properties of thin gold films, Opt. Express 25, 21, 25574–25587. https://doi.org/10.1364/OE.25.025574. [Google Scholar]
  2. Mayadas A.F., Shatzkes M., Janak J.F. (1969) Electrical resistivity model for polycrystalline films: The case of specular reflection at external surfaces, Appl. Phys. Lett. 14, 11, 345–347. https://doi.org/10.1063/1.1652680. [Google Scholar]
  3. Mayadas A.F., Shatzkes M. (1970) Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces, Phys. Rev. B 1, 1382–1389. https://doi.org/10.1103/PhysRevB.1.1382. [Google Scholar]
  4. Qian H., Xiao Y., Lepage D., Chen L., Liu Z. (2015) Quantum electrostatic model for optical properties of nanoscale gold films, Nanophotonics 4, 4, 413–418. https://doi.org/10.1515/nanoph-2015-0022. [Google Scholar]
  5. Li X.D., Chen T.P., Liu Y., Leong K.C. (2015) Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films, J. Nanoparticle Res. 17, 2, 67. https://doi.org/10.1007/s11051-015-2880-1. [Google Scholar]
  6. Reddy H., Guler U., Kildishev A.V., Boltasseva A., Shalaev V.M. (2016) Temperature-dependent optical properties of gold thin films, Opt. Mater. Express 6, 9, 2776–2802. https://doi.org/10.1364/OME.6.002776. [Google Scholar]
  7. Berning P.H., Turner A.F. (1957) Induced transmission in absorbing films applied to band pass filter design, J. Opt. Soc. Am. 47, 3, 230–239. https://doi.org/10.1364/JOSA.47.000230. [Google Scholar]
  8. Dobrowolski J.A., Li L., Kemp R.A. (1995) Metal/dielectric transmission interference filters with low reflectance. 1. Design, Appl. Opt. 34, 25, 5673–5683. https://doi.org/10.1364/AO.34.005673. [Google Scholar]
  9. Zheng Y., Kikuchi K., Yamasaki M., Sonoi K., Uehara K. (1997) Two-layer wideband antireflection coatings with an absorbing layer, Appl. Opt. 36, 25, 6335–6338. https://doi.org/10.1364/AO.36.006335. [Google Scholar]
  10. Lemarquis F., Marchand G. (1999) Analytical achromatic design of metal-dielectric absorbers, Appl. Opt. 38, 22, 4876–4884. https://doi.org/10.1364/AO.38.004876. [Google Scholar]
  11. Fang Y., Sun M. (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits, Light Sci. Appl. 4, 6, 294–294. https://doi.org/10.1038/lsa.2015.67. [Google Scholar]
  12. Andam N., Refki S., Hayashi S., Sekkat Z. (2021) Plasmonic mode coupling and thin film sensing in metal-insulator-metal structures, Sci. Rep. 11, 1, 15093. https://doi.org/10.1038/s41598-021-94143-2. [Google Scholar]
  13. Ghosh D.S., Martinez L., Giurgola S., Vergani P., Pruneri V. (2009) Widely transparent electrodes based on ultrathin metals, Optics Letters 34, 3, 325–327. https://doi.org/10.1364/OL.34.000325. [Google Scholar]
  14. Bi Y.-G., Liu Y.-F., Zhang X.-L., Yin D., Wang W.-Q., Feng J., Sun H.-B. (2019) Ultrathin metal films as the transparent electrode in ITO-free organic optoelectronic devices, Adv. Opt. Mater. 7, 6, 1800778. https://doi.org/10.1002/adom.201800778. [Google Scholar]
  15. Ji C., Liu D., Zhang C., Jay Guo L. (2020) Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%, Nat. Commun. 11, 1, 3367. https://doi.org/10.1038/s41467-020-17107-6. [Google Scholar]
  16. Phillips R.W., Bleikolm A.F. (1996) Optical coatings for document security, Appl. Opt. 35, 28, 5529–5534. https://doi.org/10.1364/AO.35.005529. [Google Scholar]
  17. Baloukas B., Trottier-Lapointe W., Martinu L. (2014) Fabry-Perot-like interference security image structures: From passive to active, Solid Films 559, 9–13. https://doi.org/10.1016/j.tsf.2013.10.030. [Google Scholar]
  18. Wang D., Liu Z., Wang H., Li M., Guo L.J., Zhang C. (2023) Structural color generation: from layered thin films to optical metasurfaces, Nanophotonics 12, 6, 1019–1081. https://doi.org/10.1515/nanoph-2022-0063. [Google Scholar]
  19. Swanepoel R. (1983) Determination of the thickness and optical constants of amorphous silicon, J. Phys. E Sci. Instr. 16, 12, 1214–1222. https://doi.org/10.1088/0022-3735/16/12/023. [Google Scholar]
  20. Poelman D., Smet P.F. (2003) Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review, J. Phys. D Appl. Phys. 36, 1850–1857. [Google Scholar]
  21. Shurvinton R., Lemarchand F., Moreau A., Lumeau J. (2021) Precise spectrophotometric method for semitransparent metallic thin-film index determination using interference enhancement, J. Eur. Opt. Soc. Rapid Publ. 17, 1, 29. https://doi.org/10.1186/s41476-021-00172-9. [Google Scholar]
  22. Nestler P., Helm C.A. (2017) Determination of refractive index and layer thickness of nm-thin films via ellipsometry, Opt. Express 25, 22, 27077–27085. https://doi.org/10.1364/OE.25.027077. [Google Scholar]
  23. Lai F., Lin L., Gai R., Lin Y., Huang Z. (2007) Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data, Thin Solid Films 515, 18, 7387–7392. [Google Scholar]
  24. Barchiesi D., Grosges T. (2014) Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth, J. Nanophotonics 8, 1, 1–17. https://doi.org/10.1117/1.JNP.8.083097. [Google Scholar]
  25. Drude P. (1902) Zur Elektronentheorie der metalle. Ann. Phys. 312, 3, 687–692. https://doi.org/10.1002/andp.19023120312. [Google Scholar]
  26. Hamberg I., Granqvist C.G. (1986) Evaporated sn-doped in2o3 films: Basic optical properties and applications to energyefficient windows, J. Appl. Phys. 60, 123–160. [Google Scholar]
  27. Ederth J., Johnsson P., Niklasson G.A., Hoel A., Hultåker A., Heszler P., Granqvist C.G., van Doorn A.R., Jongerius M.J., Burgard D. (2003) Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles, Phys. Rev. B 68, 155410. https://doi.org/10.1103/PhysRevB.68.155410. [Google Scholar]
  28. Forouhi A.R., Bloomer I. (1988) Optical properties of crystalline semiconductors and dielectrics, Phys. Rev. B 38, 3, 1865–1874. [Google Scholar]
  29. Rakić A.D., Djurišić A.B., Elazar J.M., Majewski M.L. (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 22, 5271–5283. https://doi.org/10.1364/AO.37.005271. [Google Scholar]
  30. Johnson P.B., Christy R.W. (1972) Optical constants of the noble metals, Phys. Rev. B 6, 4370–4379. https://doi.org/10.1103/PhysRevB.6.4370. [Google Scholar]
  31. Kim J., Oh H., Seo M., Lee M. (2019) Generation of reflection colors from metal-insulator-metal cavity structure enabled by thickness-dependent refractive indices of metal thin film, ACS Photonics 6, 9, 2342–2349. https://doi.org/10.1021/acsphotonics.9b00894. [Google Scholar]
  32. Shiva L.U., Ayachit N.H., Udachan L.A. (2019) Electrical and microstructural properties of silver thin films, Int. J. Nanoelectron. Mater. 12, 2, 221–236. [Google Scholar]
  33. Schwarz U.D., Haefke H., Reimann P., Güntherodt H.-J. (1994) Tip artefacts in scanning force microscopy, J. Microsc. 173, 3, 183–197. https://doi.org/10.1111/j.1365-2818.1994.tb03441.x. [Google Scholar]
  34. Shen J., Zhang D., Zhang F.-H., Gan Y. (2017) AFM tip-sample convolution effects for cylinder protrusions, Appl. Surf. Sci. 422, 482–491. https://doi.org/10.1016/j.apsusc.2017.06.053. [Google Scholar]
  35. Sopra SA refractive index database. Available at http://www.sspectra.com/sopra.html (accessed November 24, 2022). [Google Scholar]
  36. MATLAB Documentation – GlobalSearch. Available at https://www.mathworks.com/help/gads/globalsearch.html (accessed November 14, 2022). [Google Scholar]
  37. Nečas D., Klapetek P. (2012) Gwyddion: an open-source software for SPM data analysis, Cent. Eur. J. Phys. 10, 181–188. https://doi.org/10.2478/s11534-011-0096-2. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.