EOSAM 2023
Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
EOSAM 2023
Article Number 7
Number of page(s) 5
DOI https://doi.org/10.1051/jeos/2024006
Published online 15 March 2024
  1. Dubietis A., Matijošius A. (2023) Table-top optical parametric chirped pulse amplifiers: past and present, Opto-Electron Adv. 6, 220046. [CrossRef] [Google Scholar]
  2. Hanna M., Druon F., Georges P. (2006) Fiber optical parametric chirped-pulse amplification in the femtosecond regime, Opt. Express 14, 2783–2790. [CrossRef] [Google Scholar]
  3. Morin P., Dubertrand J., Beaure d’Augeres P., Quiquempois Y., Bouwmans G., Mussot A., Hugonnot E. (2018) μJ-level Raman-assisted fiber optical parametric chirped-pulse amplification, Opt. Lett. 43, 4683–4686. [CrossRef] [PubMed] [Google Scholar]
  4. Lafargue L., Scol F., Vanvincq O., Poeydebat E., Bouwmans G., Hugonnot E. (2022) All-polarization-maintaining and high-energy fiber optical parametric chirped-pulse amplification system using a solid core photonic hybrid fiber, Opt. Lett. 47, 4347–4350. [CrossRef] [PubMed] [Google Scholar]
  5. Fu W., Wise F.W. (2018) Normal-dispersion fiber optical parametric chirped-pulse amplification, Opt. Lett. 43, 5331–5334. [NASA ADS] [CrossRef] [Google Scholar]
  6. Qin Y., Batjargal O., Cromey B., Kieu K. (2020) All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification, Opt. Express 28, 2317–2325. [CrossRef] [Google Scholar]
  7. Fu W., Herda R., Wise F.W. (2020) Design guidelines for normal-dispersion fiber optical parametric chirped-pulse amplifiers, J. Opt. Soc. Am. B 37, 1790–1805. [CrossRef] [PubMed] [Google Scholar]
  8. Gottschall T., Meyer T., Schmitt M., Popp J., Limpert J., Tünnermann A. (2015) Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications, Opt. Express 23, 23968–23977. [CrossRef] [Google Scholar]
  9. Gottschall T., Limpert J., Tünnermann A. (2017) Ultra-short pulse fiber optical parametric oscillator, Opt. Lett. 42, 3423–3426. [CrossRef] [PubMed] [Google Scholar]
  10. Brinkmann M., Hellwig T., Fallnich C. (2017) Optical parametric chirped pulse oscillation, Opt. Express 25, 12884–12895. [CrossRef] [Google Scholar]
  11. Becheker R., Touil M., Idlahcen S., Tang M., Haboucha A., Barviau B., Grisch F., Camy P., Godin T., Hideur A. (2020) High-energy normal-dispersion fiber optical parametric chirped-pulse oscillator, Opt. Lett. 45, 6398–6401. [CrossRef] [PubMed] [Google Scholar]
  12. Zhou Y., Cheung K.K.Y., Yang S., Chui P.C., Wong K.K.Y. (2009) A time-dispersion-tuned picosecond fiber-optical parametric oscillator, IEEE Photonics Technol. Lett. 21, 17, 1223–1225. [CrossRef] [Google Scholar]
  13. Balac S., Fernandez A., Mahé F., Méhats F., Texier-Picard R. (2016) The interaction picture method for solving the generalized nonlinear Schrödinger equation in optics, ESAIM: M2AN 50, 4, 945–964. [CrossRef] [EDP Sciences] [Google Scholar]
  14. Sørensen S.T. (2013) Deep-blue supercontinuum light sources based on tapered photonic crystal fibers, Technical University of Denmark. [Google Scholar]
  15. Fork R.L., Brito Cruz C.H., Becker P.C., Shank C.V. (1987) Compression of optical pulses to six femtoseconds by using cubic phase compensation, Opt. Letters 12, 7, 483. [NASA ADS] [CrossRef] [Google Scholar]
  16. Hugonnot E. (2019) Chirped-pulse amplification, Techniques de l’ingénieur, TIP520WEB, e6515. Available at https://doi.org/10.51257/a-v1-e6515. [Google Scholar]
  17. Zhang W.Q., Sharping J.E., White R.T., Monro T.M., Shahraam Afshar V. (2010) Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation, Opt. Express 18, 17294–17305. [NASA ADS] [CrossRef] [Google Scholar]
  18. Kong C., Pilger C., Hachmeister H., Wei X., Cheung T.H., Lai C.S.W., Lee N.P., Tsia K.K., Wong K.K.Y., Huser T. (2020) High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fiber laser, Light Sci. Appl. 9, 25. [NASA ADS] [CrossRef] [Google Scholar]
  19. Horton N., Wang K., Kobat D., Clark C.G., Wise F.W., Schaffer C.B., Xu C. (2013) In vivo three-photon microscopy of subcortical structures within an intact mouse brain, Nature Photon. 7, 205–209. [NASA ADS] [CrossRef] [Google Scholar]
  20. Chen K., Wu T., Chen T., Wei H., Yang H., Zhou T., Li Y. (2017) Spectral focusing dual-comb coherent anti-Stokes Raman spectroscopic imaging, Opt. Lett. 42, 3634–3637. [NASA ADS] [CrossRef] [Google Scholar]
  21. Qin Y., Cromey B., Batjargal O., Kieu K. (2021) All-fiber single-cavity dual-comb for coherent anti-Stokes Raman scattering spectroscopy based on spectral focusing, Opt. Lett. 46, 146–149. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.