Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 2, 2023
Article Number 35
Number of page(s) 7
DOI https://doi.org/10.1051/jeos/2023031
Published online 19 June 2023
  1. Ankiewicz A., Akhmediev N. (2014) Higher-order integrable evolution equation and its soliton solutions, Phys. Lett. A 378, 358–361. [NASA ADS] [CrossRef] [Google Scholar]
  2. Ankiewicz A., Wang Y., Wabnitz S., Akhmediev N. (2014) Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions, Phys. Rev. E 89, 012907. [NASA ADS] [CrossRef] [Google Scholar]
  3. Biswas A., Vega-Guzman J., Kara A.H., Khan S., Triki H., Gonzalez-Gaxiola O., Moraru L., Georgescu P.L. (2023) Optical solitons and conservation laws for the concatenation model: undetermined coefficients and multipliers approach, Universe 9, 1, Article 15. [Google Scholar]
  4. Biswas A., Vega-Guzman J., Yildirim Y., Moraru L., Iticescu C., Alghamdi A.A. (2023) Optical solitons for the concatenation model with differential group delay: undetermined coefficients, Mathematics 11, 9, 2012. [CrossRef] [Google Scholar]
  5. González-Gaxiola O., Biswas A., Ruiz de Chavez J., Alghamdi A.A. (2023) Bright and dark optical solitons for the concatenation model by the Laplace–Adomian decomposition scheme. Submitted. [Google Scholar]
  6. Kukkar A., Kumar S., Malik S., Biswas A., Yildirim Y., Moshokoa S.P., Khan S., Alghamdi A.A. (2023) Optical soliton for the concatenation model with Kudryashov’s approaches, Ukr. J. Phys. Opt. 24, 2, 155–160. [NASA ADS] [CrossRef] [Google Scholar]
  7. Triki H., Sun Y., Zhou Q., Biswas A., Yıldırım Y., Alshehri H.M. (2022) Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects, Chaos Solitons Fractals 164, 112622. [NASA ADS] [CrossRef] [Google Scholar]
  8. Wang M.-Y., Biswas A., Yıldırım Y., Moraru L., Moldovanu S., Alshehri H.M. (2023) Optical solitons for a concatenation model by trial equation approach, Electronics 12, 1, Article 19. [Google Scholar]
  9. Kudryashov N.A., Biswas A., Borodina A.G., Yildirim Y., Alshehri H.M. (2023) Painleve analysis and optical solitons for a concatenated model, Optik 272, 170255. [NASA ADS] [CrossRef] [Google Scholar]
  10. Yıldırım Y., Biswas A., Moraru L., Alghamdi A.A. (2023) Quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion, Mathematics 11, 7, Article 1709. [Google Scholar]
  11. Zhou Q., Huang Z., Sun Y., Triki H., Liu W., Biswas A. (2023) Collision dynamics of three-solitons in an optical communication system with third-order dispersion and nonlinearity, Nonlinear Dyn. 111, 6, 5757–5765. [CrossRef] [Google Scholar]
  12. Zhou Q., Triki H., Xu J., Zeng Z., Liu W., Biswas A. (2022) Perturbation of chirped localized waves in a dual-power law nonlinear medium, Chaos, Solitons & Fractals 160, 112198. [NASA ADS] [CrossRef] [Google Scholar]
  13. Zhou Q., Xu M., Sun Y., Zhong Y., Mirzazadeh M. (2022) Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons, Nonlinear Dyn. 110, 2, 1747–1752. [CrossRef] [Google Scholar]
  14. Zhou Q., Zhong Y., Triki H., Sun Y., Xu S., Liu W., Biswas A. (2022) Chirped bright and kink solitons in nonlinear optical fibers with weak nonlocality and cubic-quantic-septic nonlinearity, Chin. Phys. Lett. 39, 4, 044202. [NASA ADS] [CrossRef] [Google Scholar]
  15. Zhong Y., Triki H., Zhou Q. (2023) Analytical and numerical study of chirped optical solitons in a spatially inhomogeneous polynomial law fiber with parity-time symmetry potential, Commun. Theor. Phys. 75, 025003. [NASA ADS] [CrossRef] [Google Scholar]
  16. Ding C.C., Zhou Q., Triki H., Sun Y., Biswas A. (2023) Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation, Nonlinear Dyn. 111, 3, 2621–2629. [CrossRef] [Google Scholar]
  17. Kudryashov N.A. (2021) Model of propagation pulses in an optical fiber with a new law of refractive indices, Optik 248, 168160. [NASA ADS] [CrossRef] [Google Scholar]
  18. Kudryashov N.A. (2021) Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation, Optik 206, 164335. [Google Scholar]
  19. Bayram M. (2022) Optical bullets with Biswas-Milovic equation having Kerr and parabolic laws of nonlinearity, Optik 270, 170046. [NASA ADS] [CrossRef] [Google Scholar]
  20. Belyaeva T.L., Agüero M.A., Serkin V.N. (2021) Nonautonomous solitons of the novel nonlinear Schrödinger equation: Self-compression, amplification, and the bound state decay in external potentials, Optik 244, 167584. [NASA ADS] [CrossRef] [Google Scholar]
  21. Serkin V.N., Ramirez A., Belyaeva T.L. (2019) Nonlinear-optical analogies to the Moses sea parting effect: Dark soliton in forbidden dispersion or nonlinearity, Optik 192, 162928. [NASA ADS] [CrossRef] [Google Scholar]
  22. Tang L. (2021) Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas–Lenells equation. To appear in Journal of Optics. https://doi.org/10.1007/s12596-023-01097-x. [Google Scholar]
  23. Wang M.-Y. (2021) Optical solitons of the perturbed nonlinear Schrödinger equation in Kerr media, Optik 243, 167382. [NASA ADS] [CrossRef] [Google Scholar]
  24. Wang M.-Y. (2022) Highly dispersive optical solitons of perturbed nonlinear Schrödinger equation with Kudryashov’s sextic-power law nonlinear, Optik 267, 169631. [NASA ADS] [CrossRef] [Google Scholar]
  25. Wang M.-Y. (2022) Optical solitons with perturbed complex Ginzburg–Landau equation in Kerr and cubic–quintic–septic nonlinearity, Results Phys. 33, 105077. [NASA ADS] [CrossRef] [Google Scholar]
  26. Wang T.Y., Zhou Q., Liu W.J. (2022) Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers, Chin. Phys. B 31, 020501. [NASA ADS] [CrossRef] [Google Scholar]
  27. Secer A. (2022) Stochastic optical solitons with multiplicative white noise via Itô calculus, Optik 268, 169831. [NASA ADS] [CrossRef] [Google Scholar]
  28. Wang H., Zhou Q., Liu W. (2022) Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose–Einstein condensation, J. Adv. Res. 38, 179–190. [CrossRef] [Google Scholar]
  29. Wazwaz A.-M. (2021) Bright and dark optical solitons for (3 + 1)-dimensional Schrödinger equation with cubic–quintic–septic nonlinearities, Optik 225, 165752. [NASA ADS] [CrossRef] [Google Scholar]
  30. Wazwaz A.-M. (2022) Bright and dark optical solitons of the (2 + 1)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers, Optik 251, 168334. [NASA ADS] [CrossRef] [Google Scholar]
  31. Zayed E.M.E., El-Horbaty M., Alngar M.E.M., El-Shater M. (2022) Dispersive optical solitons for stochastic Fokas–Lenells equation with multiplicative white noise, Eng 3, 4, 523–540. [CrossRef] [Google Scholar]
  32. Zhou Q. (2022) Influence of parameters of optical fibers on optical soliton interactions, Chin. Phys. Lett. 39, 1, 010501. [NASA ADS] [CrossRef] [Google Scholar]
  33. Zhou Q., Sun Y., Triki H., Zhong Y., Zeng Z., Mirzazadeh M. (2022) Study on propagation properties of one-soliton in a multimode fiber with higher-order effects, Results Phys. 41, 105898. [NASA ADS] [CrossRef] [Google Scholar]
  34. Zhou Q., Luan Z., Zeng Z., Zhong Y. (2022) Effective amplification of optical solitons in high power transmission systems, Nonlinear Dyn. 109, 4, 3083–3089. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.