EOSAM 2022
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 2, 2023
EOSAM 2022
Article Number 34
Number of page(s) 6
DOI https://doi.org/10.1051/jeos/2023027
Published online 19 June 2023
  1. Khan M.J., Khan H.S., Yousaf A., Khurshid K., Abbas A. (2018) Modern trends in hyperspectral image analysis: A review, IEEE Access 6, 14118. [CrossRef] [Google Scholar]
  2. Hilton F., Armante R., August T., Barnet C., Bouchard A., Camy-Peyret C., Capelle V., Clarisse L., Clerbaux C., Coheur P.F., Collard A. (2012) Hyperspectral earth observation from IASI: Five years of accomplishments, Bull. Am. Meteorol. Soc. 93, 347. [CrossRef] [Google Scholar]
  3. Carrasco O., Gomez R.B., Chainani A., Roper W.E. (2003) Hyperspectral imaging applied to medical diagnoses and food safety, in: Faust N.L., Roper W.E. (eds), Geo-spatial and temporal image and data exploitation III, 21, 24 April, 2003, Orlando, FL, USA. SPIE. [Google Scholar]
  4. Calin M.A., Parasca S.V., Savastru D., Manea D. (2013) Hyperspectral imaging in the medical field: Present and future, Appl. Spectrosc. Rev. 49, 435. [Google Scholar]
  5. Picon A., Ghita O., Iriondo P.M., Bereciartua A., Whelan P.F. (2010) Automation of waste recycling using hyperspectral image analysis, in: 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010), 13–16 September 2010, Bilbao, Spain. IEEE. [Google Scholar]
  6. Feng Y.Z., Sun D.W. (2012) Application of hyperspectral imaging in food safety inspection and control: A review, Crit. Rev. Food Sci. Nutr. 52, 1039. [CrossRef] [Google Scholar]
  7. Behmann J., Acebron K., Emin D., Bennertz S., Matsubara S., Thomas S., Bohnenkamp D., Kuska M., Jussila J., Salo H., Mahlein A.K. (2018) Specim IQ: Evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection, Sensors 18, 441. [NASA ADS] [CrossRef] [Google Scholar]
  8. Levin P., Ashkenazy E., Raz A., Hershcovitz M., Bouwstra S., Mendlovic D., Krylov S. (2019) A wafer level packaged fully integrated hyperspectral Fabry-Perot filter with extended optical range, in: 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), 27–31 January 2019, Seoul, South Korea. IEEE. [Google Scholar]
  9. Geelen B., Tack N., Lambrechts A. (2014) A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic, in: von Freymann G., Schoenfeld W.V., Rumpf R.C. (eds), Advanced fabrication technologies for micro/nano optics and photonics VII, March 2014, San Francisco, CA, USA, SPIE. [Google Scholar]
  10. Hubold M., Karl J., Leitel R., Danz N., Brüning R. (2022) Concept, manufacturing and challenges of ultra-compact snapshot multi-spectral multi-aperture imaging systems, EPJ Web Conf. 266, 03013. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Hagen N., Dereniak E.L., Sass D.T. (2007) Fourier methods of improving reconstruction speed for CTIS imaging pectrometers, SPIE Proc. 6661, 666103-1–666103-11. [NASA ADS] [Google Scholar]
  12. Ahlebæk M.J., Peters M.S., Huang W.C., Frandsen M.T., Eriksen R.L., Jørgensen B. (2022) The hybrid approach – convolutional neural networks and expectation maximization algorithm – for tomographic reconstruction of hyperspectral images, J. Spectr. Imaging 12, Article ID a1. [Google Scholar]
  13. Huang W.C., Peters M.S., Ahlebaek M.J., Frandsen M.T., Eriksen R.L., Jørgensen B. (2021) The application of convolutional neural networks for tomographic reconstruction of hyperspectral images, Displays 74, 102218. [Google Scholar]
  14. Zimmermann M., Amann S., Mel M., Haist T., Gatto A. (2022) Deep learning-based hyperspectral image reconstruction from emulated and real computed tomography imaging spectrometer data, Opt. Eng. 61, 053103-1–053103-11. [NASA ADS] [CrossRef] [Google Scholar]
  15. Mel M., Gatto A., Zanuttigh P. (2022) Joint reconstruction and super resolution of hyper-spectral CTIS images, in: 33rd British Machine Vision Conference 2022, BMVC 2022, November 21–24, 2022, London, UK. BMVA Press. [Google Scholar]
  16. Narea-Jiménez F., Castro-Ramos J., Sánchez-Escobar J.J., Muñoz-Morales A. (2022) Assessment of a computed tomography imaging spectrometer using an optimized expectation-maximization algorithm, Appl. Opt. 61, 6076. [CrossRef] [Google Scholar]
  17. Peters M.S., Eriksen R.L., Jørgensen B. (2022) High-resolution snapshot hyperspectral computed tomography imaging spectrometer: Real-world applications, in: Georges M.P., Popescu G., Verrier N. (eds), Unconventional optical imaging III, 9–20 May, 2022, Strasbourg, France, SPIE. [Google Scholar]
  18. Habel R. (2017) 48–1: Invited paper: Spectral sensing with computed tomography imaging spectrometry, SID Symp. Digest Tech. Papers 48, 716. [CrossRef] [Google Scholar]
  19. Harvey J.E., Pfisterer R.N. (2019) Understanding diffraction grating behavior: Including conical diffraction and rayleigh anomalies from transmission gratings, Opt. Eng. 58, 087105-1–087105-21. [NASA ADS] [CrossRef] [Google Scholar]
  20. Seldowitz M.A., Allebach J.P., Sweeney D.W. (1987) Synthesis of digital holograms by direct binary search, Appl. Opt. 26, 2788. [NASA ADS] [CrossRef] [Google Scholar]
  21. Okamoto T., Yamaguchi I. (1991) Simultaneous acquisition of spectral image information, Opt. Lett. 16, 1277. [NASA ADS] [CrossRef] [Google Scholar]
  22. Volin C.E., Descour M.R., Dereniak E.L. (2002) Design of broadband-optimized computer-generated hologram dispersers for the computed-tomography imaging spectrometer, in: Descour M.R., Shen S.S. (eds), SPIE Proceedings, January 2002, San Diego, CA, USA, SPIE. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.