EOSAM 2022
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
EOSAM 2022
Article Number 23
Number of page(s) 8
DOI https://doi.org/10.1051/jeos/2023018
Published online 28 April 2023
  1. Langpoklakpam C., Liu A.-C., Chu K.-H., Hsu L.-H., Lee W.-C., Chen S.-C., Sun C.-W., Shih M.-H., Lee K.-Y., Kuo H.-C. (2022) Review of silicon carbide processing for power MOSFET, Crystals 12, 2, 245. [CrossRef] [Google Scholar]
  2. Wellmann P., Ohtani N., Rupp R. (2022) Wide bandgap semiconductors for power electronics: Materials, devices, applications, Wiley. [Google Scholar]
  3. Fraga M.A., Bosi M., Negri M. (2015) Silicon carbide in microsystem technology – thin film versus bulk material, in: Advanced Silicon Carbide Devices and Processing, Sep 17, 2015, InTech. https://doi.org/10.5772/60970. [Google Scholar]
  4. Dong L., Sun G.S., Yu J., Yan G.G., Zhao W.S., Wang L., Zhang X.H., Li X.G., Wang Z.G. (2014) Structure and Origin of Carrot Defects on 4H-SiC Homoepitaxial Layers, Mater. Sci. Forum 778–780, 354–357. [Google Scholar]
  5. Matsuhata H., Sugiyama N., Chen B., Yamashita T., Hatakeyama T., Sekiguchi T. (2016) Surface defects generated by intrinsic origins on 4H-SiC epitaxial wafers observed by scanning electron microscopy, Microscopy 66, 2, 95–102. [Google Scholar]
  6. Chen P.-C., Miao W.-C., Ahmed T., Pan Y.-Y., Lin C.-L., Chen S.-C., Kuo H.-C., Tsui B.-Y., Lien D.-H. (2022) Defect inspection techniques in SiC, Nanoscale Res. Lett. 17, 1, 30. [NASA ADS] [CrossRef] [Google Scholar]
  7. Guo J., Yang Y., Raghothamachar B., Kim T., Dudley M., Kim J. (2017) Understanding the microstructures of triangular defects in 4H-SiC homoepitaxial, J. Crystal Growth 480, 119–125. [NASA ADS] [CrossRef] [Google Scholar]
  8. Kim H.-K., Kim S.I., Kim S., Lee N.-S., Shin H.-K., Lee C.W. (2020) Relation between work function and structural properties of triangular defects in 4H-SiC epitaxial layer: Kelvin probe force microscopic and spectroscopic analyses, Nanoscale 12, 15, 8216–8229. [CrossRef] [Google Scholar]
  9. Abou-Ras D., Caballero R., Fischer C.-H., Kaufmann C., Lauermann I., Mainz R., Mönig H., Schöpke A., Stephan C., Streeck C., Schorr S., Eicke A., Döbeli M., Gade B., Hinrichs J., Nunney T., Dijkstra H., Hoffmann V., Klemm D., Efimova V., Bergmaier A., Dollinger G., Wirth T., Unger W., Rockett A., Perez-Rodriguez A., Alvarez-Garcia J., Izquierdo-Roca V., Schmid T., Choi P.-P., Müller M., Bertram F., Christen J., Khatri H., Collins R., Marsillac S., Kötschau I. (2011) Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films, Microsc. Microanal. 17, 5, 728–751. [NASA ADS] [CrossRef] [Google Scholar]
  10. Fujiwara H. (2007) Spectroscopic ellipsometry: principles and applications, Wiley. [CrossRef] [Google Scholar]
  11. Azzam R.M.A., Bashara N.M. (1987) Ellipsometry and polarized light, Elsevier Science Publishing Co, North-Holland. [Google Scholar]
  12. Rosu D.-M., Ortel E., Hodoroaba V.-D., Kraehnert R., Hertwig A. (2017) Ellipsometric porosimetry on pore-controlled TiO2 layers, Appl. Surface Sci. 421, 487–493. [NASA ADS] [CrossRef] [Google Scholar]
  13. Sachse R., Moor M., Kraehnert R., Hodoroaba V.-D., Hertwig A. (2022) Ellipsometry-based approach for the characterization of mesoporous thin films for H2 technologies, Adv. Eng. Mater. 24, 6, 2101320. [CrossRef] [Google Scholar]
  14. Funke S., Miller B., Parzinger E., Thiesen P., Holleitner A.W., Wurstbauer U. (2016) Imaging spectroscopic ellipsometry of MoS2, J. Phys. Condens. Matter 28, 38, 385301. [NASA ADS] [CrossRef] [Google Scholar]
  15. Wurstbauer U., Röling C., Wurstbauer U., Wegscheider W., Vaupel M., Thiesen P.H., Weiss D. (2010) Imaging ellipsometry of graphene, Appl. Phys. Lett. 97, 23, 231901. [NASA ADS] [CrossRef] [Google Scholar]
  16. Braeuninger-Weimer P., Funke S., Wang R., Thiesen P., Tasche D., Viöl W., Hofmann S. (2018) Fast, noncontact, wafer-scale, atomic layer resolved imaging of two-dimensional materials by ellipsometric contrast micrography, ACS Nano 12, 8, 8555–8563. [CrossRef] [Google Scholar]
  17. Zollner S., Chen J.G., Duda E., Wetteroth T., Wilson S.R., Hilfiker J.N. (1999) Dielectric functions of bulk 4H and 6H SiC and spectroscopic ellipsometry studies of thin SiC films on Si, J. Appl. Phys. 85, 12, 8353–8361. [NASA ADS] [CrossRef] [Google Scholar]
  18. Tiwald T.E., Woollam J.A., Zollner S., Christiansen J., Gregory R.B., Wetteroth T., Wilson S.R., Powell A.R. (1999) Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry, Phys. Rev. B 60, 16, 11464–11474. [NASA ADS] [CrossRef] [Google Scholar]
  19. Li H., Cui C., Bian S., Lu J., Xu X., Arteaga O. (2020) Double-sided and single-sided polished 6H-SiC wafers with subsurface damage layer studied by Mueller matrix ellipsometry, J. Appl. Phys. 128, 23, 235304. [NASA ADS] [CrossRef] [Google Scholar]
  20. Synowicki R.A. (2008) Suppression of backside reflections from transparent substrates, Phys. Status Solidi C 5, 5, 1085–1088. [NASA ADS] [CrossRef] [Google Scholar]
  21. Malacara D. (2007) Optical shop testing, Wiley. [CrossRef] [Google Scholar]
  22. De Groot P. (2015) Principles of interference microscopy for the measurement of surface topography, Adv. Opt. Photonics 7, 1–65. [NASA ADS] [CrossRef] [Google Scholar]
  23. De Groot P.J. (2017) The meaning and measure of vertical resolution in optical surface topography measurement, Appl. Sci. 7, 1, 54. [NASA ADS] [CrossRef] [Google Scholar]
  24. DIN ISO/IEC 17025:2017 (2017) General requirements for the competence of testing and callibration laboratories. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.