Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Article Number 22
Number of page(s) 17
DOI https://doi.org/10.1051/jeos/2023013
Published online 28 April 2023
  1. Watson A.B., Ahumada A.J. (2012) Modeling acuity for optotypes varying in complexity, J. Vision 12, 10, 1–19. [Google Scholar]
  2. Watson A.B., Ahumada A.J. Jr (2008) Predicting visual acuity from wavefront aberrations, J. Vision 8, 4, 17. [Google Scholar]
  3. Thibos L.N., Applegate R.A., Schwiegerling J.T., Webb R. (2002) Standards for reporting the optical aberrations of eyes, J. Refract. Surg. 18, 5, S652–S660. [Google Scholar]
  4. Watson A.B., Ahumada A.J. (2015) Letter identification and the neural image classifier, J. Vision 15, 2, 15. [Google Scholar]
  5. Marsack J.D., Thibos L.N., Applegate R.A. (2004) Metrics of optical quality derived from wave aberrations predict visual performance, J. Vision 4, 322–328. [Google Scholar]
  6. Marcos S., Barbero S., Llorente L., Merayo-Lloves J. (2001) Optical response to LASIK surgery for myopia from total and corneal aberration measurements, Invest. Ophthalmol. Visual Sci. 42, 3349–3356. [Google Scholar]
  7. Applegate R.A., Marsack J.D., Thibos L.N. (2006) Metrics of retinal image quality predict visual performance in eyes with 20/17 or better visual acuity, Optom. Vision Sci. 83, 635–640. [CrossRef] [Google Scholar]
  8. Cheng X., Bradley A., Thibos L.N. (2004) Predicting subjective judgment of best focus with objective image quality metrics”, J. Vision 4, 310–321. [Google Scholar]
  9. Chen L., Singer B., Guirao A., Porter J., Williams D.R. (2005) Image metrics for predicting subjective image quality, Optom. Vision Sci. 82, 358–369. [CrossRef] [Google Scholar]
  10. Marcos S., Burns S.A., Moreno-Barriusop E., Navarro R. (1999) A new approach to the study of ocular chromatic aberrations, Vision Res. 39, 4309–4323. [CrossRef] [Google Scholar]
  11. Ravikumar S., Bradley A., Thibos L.N. (2006) Do monochromatic aberrations protect the eye against chromatic blur?, Invest. Ophthalmol. Visual Sci. 47, EAbstract 1505. [Google Scholar]
  12. van Meeteren A. (1974) Calculations on the optical modulation transfer function of the human eye for white light, Opt. Acta 21, 395–412. [NASA ADS] [CrossRef] [Google Scholar]
  13. Marcos S., Burns S.A., Moreno-Barriusop E., Navarro R. (1999) A new approach to the study of ocular chromatic aberrations, Vision Res. 39, 4309–4323. [CrossRef] [Google Scholar]
  14. Ravikumar S., Thibos L.N., Bradley A. (2008 Oct) Calculation of retinal image quality for polychromatic light, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 25, 10, 2395–407. [NASA ADS] [CrossRef] [Google Scholar]
  15. Arines J., Almaguer C., Acosta E. (2017) Potential use of cubic phase masks for extending the range of clear vision in presbyopes: Initial calculation and simulation studies, Opht. Phys. Opt. 37, 2, 141–150. https://doi.org/10.1111/opo.12348. [CrossRef] [Google Scholar]
  16. Águila-Carrasco A.J., Read S.A., Montés-Micó R., Iskander D.R. (2017) The effect of aberrations on objectively assessed image quality and depth of focus, J. Vision 17, 2, 2. https://doi.org/10.1167/17.2.2. [CrossRef] [Google Scholar]
  17. Young L.K., Love G.D., Smithson H.E. (2013) Accounting for the phase, spatial frequency and orientation demands of the task improves metrics based on the visual Strehl ratio, Vision Res. 90, 57–67. [CrossRef] [Google Scholar]
  18. Verma S., Hesser J., Arba-Mosquera S. (2017) Optimum laser beam characteristics for achieving smoother ablations in laser vision correction, Invest. Ophthalmol. Vis. Sci. 58, 4, 2021–2037. [CrossRef] [Google Scholar]
  19. Thomas J.W., Mitra S., Chuang A.Z., Yee R.W. (2003) Electron microscopy of surface smoothness of porcine corneas and acrylic plates with four brands of excimer laser, J. Refract. Surg. 19, 6, 623–8. [CrossRef] [Google Scholar]
  20. Verma S., Hesser J., Arba-Mosquera S. (2021) Effect of laser beam truncation (pinhole), (ordered) dithering, and jitter on residual smoothness after poly(methyl methacrylate) ablations, using a close-to-Gaussian beam profile, Adv. Opt. Technol. 10, 6, 409–421. https://doi.org/10.1515/aot-2021-0040. [NASA ADS] [CrossRef] [Google Scholar]
  21. Vinciguerra P., Camesasca F.I., Vinciguerra R., Arba-Mosquera S., Torres I., Morenghi E., Randleman J.B. (2017) Advanced surface ablation with a new software for the reduction of ablation irregularities, J. Refract. Surg. 33, 2, 89–95. https://doi.org/10.3928/1081597X-20161122-01. PMID: 28192587. [CrossRef] [Google Scholar]
  22. Naroo S.A., Charman W.N. (2005) Surface roughness after excimer laser ablation using a PMMA model: Profilometry and effects on vision, J. Refract. Surg. 21, 3, 260–8. [CrossRef] [Google Scholar]
  23. Vinciguerra P., Azzolini M., Radice P., Sborgia M., De Molfetta V. (1998) A method for examining surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis: Predictor of optical and functional outcomes, J. Refract. Surg. 14, 2 Suppl, S204–6. [Google Scholar]
  24. Walker M.B., Wilson S.E. (2001) Recovery of uncorrected visual acuity after laser in situ keratomileusis or photorefractive keratectomy for low myopia, Cornea 20, 2, 153–5. [CrossRef] [Google Scholar]
  25. Hersh P.S., Brint S.F., Maloney R.K., Durrie D.S., Gordon M., Michelson M.A., Thompson V.M., Berkeley R.B., Schein O.D., Steinert R.F. (1998) Photorefractive keratectomy versus laser in situ keratomileusis for moderate to high myopia. A randomized prospective study, Ophthalmology 105, 8, 1512–22. discussion 1522–3. [CrossRef] [Google Scholar]
  26. Lin D.T.C., Holland S.P., Verma S., Hogden J., Arba-Mosquera S. (2019) Immediate and short term visual recovery after SmartSurfACE photorefractive keratectomy, J. Optom. 12, 4, 240–247. https://doi.org/10.1016/j.optom.2019.04.003. Epub 2019 Aug 28. PMID: 31473174; PMCID: PMC6978587. [CrossRef] [Google Scholar]
  27. de Ortueta D., von Rüden D., Arba-Mosquera S. (2022) Refractive effect of epithelial remodelling in myopia after transepithelial photorefractive keratectomy, Vision 6, 4, 74. https://doi.org/10.3390/vision6040074. [CrossRef] [Google Scholar]
  28. Vinciguerra P., Azzolini M., Airaghi P., Radice P., De Molfetta V. (1998) Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes, J. Refract. Surg. 14, 2 Suppl, S199–203. [Google Scholar]
  29. Howarth P.A., Zhang X., Bradley A., Still D.L., Thibos L.N. (1988) Does the chromatic aberration of the eye vary with age?, Vision Res. 5, 2087–2092. [Google Scholar]
  30. Salmon T.O., West R.W., Gasser W., Kenmore T. (2003) Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer, Optom. Vis. Sci. 80, 1, 6–14. [CrossRef] [Google Scholar]
  31. Thibos L.N., Hong X., Bradley A., Applegate R.A. (2004) Accuracy and precision of objective refraction from wavefront aberrations, J. Vision 4, 4, 329–51. [Google Scholar]
  32. Canals M., Elies D., Costa-Vila J., Coret A. (2004) Comparative study of ablation profiles of six different excimer lasers, J. Refract. Surg. 20, 2, 106–9. [CrossRef] [Google Scholar]
  33. Liang F.Q., Geasey S.D., del Cerro M., Aquavella J.V. (1992) A new procedure for evaluating smoothness of corneal surface following 193-nanometer excimer laser ablation, Refract. Corneal Surg. 8, 6, 459–65. [Google Scholar]
  34. Mrochen M., Schelling U., Wuellner C., Donitzky C. (2009) Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system, J. Cataract Refract. Surg. 35, 2, 363–73. https://doi.org/10.1016/j.jcrs.2008.10.053. [CrossRef] [Google Scholar]
  35. Doga A.V., Shpak A.A., Sugrobov V.A. (2004) Smoothness of ablation on polymethylmethacrylate plates with four scanning excimer lasers, J. Refract. Surg. 20, 5 Suppl, S730–3. [Google Scholar]
  36. Argento C., Valenzuela G., Huck H., Cremona G., Cosentino M.J., Gale M.F. (2001) Smoothness of ablation on acrylic by four different excimer lasers, J. Refract. Surg. 17, 1, 43–5. [CrossRef] [Google Scholar]
  37. O’Donnell C.B., Kemner J., O’Donnell F.E. Jr (1996) Ablation smoothness as a function of excimer laser delivery system, J. Cataract Refract. Surg. 22, 6, 682–5. [CrossRef] [Google Scholar]
  38. Hauge E., Naroo S.A., Charman W.N. (2001) Poly(methyl methacrylate) model study of optical surface quality after excimer laser photorefractive keratectomy, J Cataract Refract Surg. 27, 12, 2026–35. [CrossRef] [Google Scholar]
  39. O’Donnell C.B., Kemner J., O’Donnell F.E. (1996) Surface roughness in PMMA is linearly related to the amount of excimer laser ablation, J. Refract. Surg. 12(1), 171–4. [CrossRef] [Google Scholar]
  40. Anschutz T., Pieger S. (1999) Correlation of laser profilometry scans with clinical results, J. Refract. Surg. 15, 2 Suppl, S252–6. [Google Scholar]
  41. Arba-Mosquera S., Vinciguerra P., Verma S. (2018) Review of technological advancements in calibration systems for laser vision correction, J. Biomed. Opt. 23, 2, 1–8. [CrossRef] [Google Scholar]
  42. Salmon T.O., West R.W., Gasser W., Kenmore T. (2003) Measurement of refractive errors in young myopes using the COAS Shack-Hartman n aberrometer, Optom. Vis. Sci. 80, 1, 6–14. [CrossRef] [Google Scholar]
  43. Xu R., Bradley A., Thibos L.N. (2013) Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: A computational study, Ophthal. Physiol. Opt. 33, 4, 444–55. https://doi.org/10.1111/opo.12072. Epub 2013 May 19. PMID: 23683093; PMCID: PMC4056778. [CrossRef] [Google Scholar]
  44. Zhao P.F., Li S.M., Lu J., Song H.M., Zhang J., Zhou Y.H., Wang N.L. (2017) Effects of higher-order aberrations on contrast sensitivity in normal eyes of a large myopic population, Int. J. Ophthalmol. 10, 9, 1407–1411. [Google Scholar]
  45. Domínguez-Vicent A., Pérez-Vives C., Ferrer-Blasco T., García-Lázaro S., Montés-Micó R. (2013) The effect of simulated normal and amblyopic higher-order aberrations on visual performance, J. AAPOS 17, 3, 269–75. [CrossRef] [Google Scholar]
  46. Shetty N., Kochar S., Paritekar P., Artal P., Shetty R., Nuijts R.M.M.A., Webers C.A.B., Sinha Roy A. (2018) Patient-specific determination of change in ocular spherical aberration to improve near and intermediate visual acuity of presbyopic eyes, J. Biophoton. 12, 4, e201800259. [Google Scholar]
  47. Arba Mosquera S., de Ortueta D. (2011) Correlation among ocular spherical aberration, corneal spherical aberration, and corneal asphericity before and after LASIK for myopic astigmatism with the SCHWIND AMARIS platform, J. Refract. Surg. 27, 6, 434–43. [Google Scholar]
  48. Lohmann C.P., Guell J.L. (1998) Regression after LASIK for the treatment of myopia: The role of the corneal epithelium, Semin. Ophthalmol. 13, 2, 79–82. [Google Scholar]
  49. Moilanen J.A., Holopainen J.M., Vesaluoma M.H., Tervo T.M. (2008) Corneal recovery after LASIK for high myopia: A 2-year prospective confocal microscopic study, Br. J. Ophthalmol. 92, 10, 1397–402. https://doi.org/10.1136/bjo.2007.126821. [CrossRef] [Google Scholar]
  50. Kanellopoulos A.J., Asimellis G. (2014) Longitudinal postoperative LASIK epithelial thickness profile changes in correlation with degree of myopia correction, J. Refract. Surg. 30, 166–171. https://doi.org/10.3928/1081597X-20140217-03. [Google Scholar]
  51. Reinstein D.Z., Archer T.J., Gobbe M. (2014) Rate of change of curvature of the corneal stromal surface drives epithelial compensatory changes and remodeling, J. Refract. Surg. 30, 800–802. https://doi.org/10.3928/1081597X-20141113-02. [CrossRef] [Google Scholar]
  52. Vinciguerra P., Azzolini C., Vinciguerra R. (2015) Corneal curvature gradient determines corneal healing process and epithelial behavior, J. Refract. Surg. 31, 4, 281–2. https://doi.org/10.3928/1081597X-20150319-08. [CrossRef] [Google Scholar]
  53. Vinciguerra P., Roberts C.J., Albé E., Romano M.R., Mahmoud A., Trazza S., Vinciguerra R. (2014) Corneal curvature gradient map: A new corneal topography map to predict the corneal healing process, J. Refract. Surg. 30, 3, 202. [CrossRef] [Google Scholar]
  54. Wilson S.E., Mohan R.R., Hong J.W., Lee J.S., Choi R., Mohan R.R. (2001) The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: Elusive control of biological variability and effect on custom laser vision correction, Arch. Ophthalmol. 119, 6, 889–96. [CrossRef] [Google Scholar]
  55. Dierick H.G., Missotten L. (1992) Is the corneal contour influenced by a tension in the superficial epithelial cells? A new hypothesis, Refract. Corneal Surg. 8, 1, 54–9; discussion 60. [Google Scholar]
  56. Gauthier C.A., Holden B.A., Epstein D., Tengroth B., Fagerholm P., Hamberg-Nyström H. (1997) Factors affecting epithelial hyperplasia after photorefractive keratectomy [see comments], J. Cataract Refract. Surg 23, 7, 1042–50. [CrossRef] [Google Scholar]
  57. Huang D., Tang M., Shekhar R. (2003) Mathematical model of corneal surface smoothing after laser refractive surgery, Am. J. Ophthalmol. 135, 3, 267–78. [CrossRef] [Google Scholar]
  58. Lieberman D.M., Grierson J.W. (2000) A mathematical model for laser in situ keratomileusis and photorefractive keratectomy, J. Refract. Surg. 16, 2, 177–86. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.