Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
EOSAM 2022
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/jeos/2023010 | |
Published online | 10 April 2023 |
- Campanale C., Massarelli C., Savino I., Locaputo V., Uricchio V.F. (2020) A detailed review study on potential effects of microplastics and additives of concern on human health, Int. J. Environ. Res. Public Health 17, 1212. https://doi.org/10.3390/ijerph17041212. [CrossRef] [Google Scholar]
- Peixoto D., Pinheiro C., Amorim J., Oliva-Teles L., Guilhermino L., Vieira M.N. (2019) Microplastic pollution in commercial salt for human consumption: A review, Estuar. Coast. Shelf Sci. 219, 161–168. https://doi.org/10.1016/j.ecss.2019.02.018. [NASA ADS] [CrossRef] [Google Scholar]
- Wanner P. (2021) Plastic in agricultural soils – A global risk for groundwater systems and drinking water supplies? – A review, Chemosphere 264, 128453. https://doi.org/10.1016/j.chemosphere.2020.128453. [NASA ADS] [CrossRef] [Google Scholar]
- Asamoah B.O., Uurasjärvi E., Räty J., Koistinen A., Roussey M., Peiponen K. (2021) Towards the development of portable and in situ optical devices for detection of micro-and nanoplastics in water: A review on the current status, Polym. Eng. Sci. 13, 730. https://doi.org/10.3390/polym13050730. [Google Scholar]
- Becucci M., Mancini M., Campo R., Paris E. (2022) Microplastics in the Florence wastewater treatment plant studied by a continuous sampling method and Raman spectroscopy: A preliminary investigation, Sci. Total Environ. 808, 152025. https://doi.org/10.1016/j.scitotenv.2021.152025. [NASA ADS] [CrossRef] [Google Scholar]
- Elsayed A.A., Erfan M., Sabry Y.M., Dris R., Gaspéri J., Barbier J.S., Marty F., Bouanis F., Luo S. (2021) A microfluidic chip enables fast analysis of water microplastics by optical spectroscopy, Sci. Rep. 11, 1–11. https://doi.org/10.1038/s41598-021-89960-4. [NASA ADS] [CrossRef] [Google Scholar]
- Faltynkova A., Johnsen G., Wagner M. (2021) Hyperspectral imaging as an emerging tool to analyse microplastics: A systematic review and recommendation for future development, Microplast. Nanoplast. 1, 13. [Google Scholar]
- Mariano S., Tacconi S., Fidaleo M., Rossi M., Dini L. (2021) Micro and nanoplastics identification: Classic methods and innovative detection techniques, Front. Toxicol. 3, 1–17. https://doi.org/10.3389/ftox.2021.636640. [CrossRef] [Google Scholar]
- Behal J., Valentino M., Miccio L., Bianco V., Itri S., Mossotti R., Dalla Fontana G., Stella E., Ferraro P. (2022) Toward an all-optical fingerprint of syntetic and natural microplastic fibers by polarization-sensitive holographic microscopy, ACS Photon. 9, 694–705. [NASA ADS] [CrossRef] [Google Scholar]
- Asamoah B.O., Kanyathare B., Roussey M., Peiponen K.-E. (2019) A prototype of a portable optical sensor for the detection of transparent and translucent microplastics in freshwater, Chemosphere 231, 161–167. https://doi.org/10.1016/j.chemosphere.2019.05.114. [NASA ADS] [CrossRef] [Google Scholar]
- Leonard J., Koydemir H., Koutnik H.C., Tseng V.S., Oscan A., Mohanty S.K. (2022) Smart-phone enabled rapid quantification of microplastics, J. Haz. Mat. Lett. 3, 10052. [Google Scholar]
- Haapala A., Laitinen O., Karinkanta P., Liimatainen H. (2013) Optical characterisation of size, shape and fibrillarity from microfibrillar and microcrystalline cellulose, and fine ground wood powder fractions, Appita J. 66, 331–339. [Google Scholar]
- Valentino M., Jaromír B., Bianco V., Itri S., Mossotti R., Dalla G., Battistini T., Stella E., Miccio L., Ferraro P. (2022) Intelligent polarization-sensitive holographic fl ow-cytometer: Towards specificity in classifying natural and microplastic fibers, Sci. Total Environ. 815, 152708. https://doi.org/10.1016/j.scitotenv.2021.152708. [NASA ADS] [CrossRef] [Google Scholar]
- Peiponen K.-E., Jukka R., Ishaq U., Pélisset S., Ali R. (2019) Outlook on optical identification of micro- and nanoplastics in aquatic environments, Chemosphere 214, 424–429. https://doi.org/10.1016/j.chemosphere.2018.09.111. [NASA ADS] [CrossRef] [Google Scholar]
- Abaroa-Perez B., Ortiz-Montoa S., Hernandez-Brito J.J., Vega-Moreno D. (2022) Yellowing, weathering and degradation of marine pellets and their influence on the adsorption of chemical pollutants, Polymers (Basel) 14, 1303. [Google Scholar]
- Lv L., Yan X., Feng L., Jiang S., Lu Z., Xie H., Sun S., Chen J., Li C. (2021) Challenge for the detection of microplastics in the environment, Water Environ. Res. 93, 5–15. https://doi.org/10.1002/wer.1281. [CrossRef] [Google Scholar]
- Morét-ferguson S., Lavender K., Proskurowski G., Murphy E.K., Peacock E.E., Reddy C.M. (2010) The size, mass, and composition of plastic debris in the western North Atlantic Ocean, Mar. Pollut. Bull. 60, 1873–1878. https://doi.org/10.1016/j.marpolbul.2010.07.020. [CrossRef] [Google Scholar]
- Zhao S., Danley M., Ward J.E., Mincer T.J. (2017) An approach for extraction, characterization and quantification of microplastics in marine snow using Raman microscopy, Anal. Methods 9, 1470–1478. https://doi.org/10.1039/c6ay02302a. [CrossRef] [Google Scholar]
- Löder M.G.J., Gerdts G. (2015) Methodology used for the detection and identification of microplastics – A critical appraisal, in: Bergmann M., Gutow L., Klages M. (eds), Marine anthropogenic litter, Springer Open, Cham, 214 p. [Google Scholar]
- Haapala A., Levanic J., Nadrah P. (2020) Analyzing TEMPO-oxidized cellulose fiber morphology: New insights into optimization of the oxidation process and nanocellulose dispersion quality, ACS Sustain. Chem. Eng. 8, 17752–17762. https://doi.org/10.1021/acssuschemeng.0c05989. [CrossRef] [Google Scholar]
- Kanyathare B., Asamoah B.O., Ishaq U., Amoani J., Räty J., Peiponen K.-E. (2020) Optical transmission spectra study in visible and near-infrared spectral range for identification of rough transparent plastics in aquatic environment, Chemosphere 248, 126071. [NASA ADS] [CrossRef] [Google Scholar]
- Doyle M.J., Watson W., Bowlin N.M., Sheavly S.B. (2011) Plastic particles in coastal pelagic ecosystems of the Northeast Paci fi c ocean, Mar. Environ. Res. 71, 41–52. https://doi.org/10.1016/j.marenvres.2010.10.001. [NASA ADS] [CrossRef] [Google Scholar]
- Piarulli S., Sciutto G., Oliveri P., Malegori C., Prati S., Mazzeo R., Airoldi L. (2020) Rapid and direct detection of small microplastics in aquatic samples by a new near infrared hyperspectral imaging (NIR-HSI) method, Chemosphere 260, 127655. https://doi.org/10.1016/j.chemosphere.2020.127655. [NASA ADS] [CrossRef] [Google Scholar]
- Huang H., Ullah J., Shuchang Q., Zehao L., Chunfang S., Wang H. (2020) Hyperspectral imaging as a potential online detection method of microplastics, Bull. Environ. Contam. Toxicol. 107, 754–763. https://doi.org/10.1007/s00128-020-02902-0. [Google Scholar]
- Bianco V., Memmolo P., Cargani P., Merola F., Paturzo M., Distarte C., Ferraro P. (2020) Microplastic identification via holographic imaging and machine learning, Adv. Intell. Syst. 2, 1900153. [CrossRef] [Google Scholar]
- Horisaki R., Fujii K., Tanida J. (2018) Single-shot and lensless complex-amplitude imaging with incoherent light based on machine learning, Opt. Rev. 25, 593–597. [NASA ADS] [CrossRef] [Google Scholar]
- Selmke M. (2020) Bubble optics, Appl. Opt. 59, 45–58. [NASA ADS] [CrossRef] [Google Scholar]
- Senouci-Bereksi M., Kies F.K., Bentahar F. (2018) Hydrodynamics and bubble size distribution in a stirred reactor, Arab. J. Sci. Eng. 43, 5905–5917. https://doi.org/10.1007/s13369-018-3071-z. [CrossRef] [Google Scholar]
- Walls P.L.L., Bird J.C., Bourouiba L. (2014) Moving with bubbles: A review of the interactions between bubbles and the microorganisms that surround them, Integr. Comp. Biol. 54, 1014–1025. https://doi.org/10.1093/icb/icu100. [CrossRef] [Google Scholar]
- Renner G., Nellessen A., Schwiess A., Wenzel M., Schmidt T.C., Schram J. (2020) Hydrophobicity – water/air based enrichment cell for microplastics analysis within environmental samples: A proof of concept, Methods X 7, 100732. [Google Scholar]
- Li Y., Fu Q., Yu S., Yan M., Berglund L. (2016) Optically transparent wood from a nanoporous cellulosic template, Biomacromolecules 17, 1358–1364. [CrossRef] [Google Scholar]
- Enders K., Lenz R., Stedmon C.A., Nielsen T.G. (2015) Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution, Mar. Pollut. Bull. 100, 70–81. https://doi.org/10.1016/j.marpolbul.2015.09.027. [NASA ADS] [CrossRef] [Google Scholar]
- Woo H., Seo K., Choi Y., Kim J., Tanaka M., Lee K., Choi J. (2021) Methods of analyzing microsized plastics in the environment, Appl. Sci. 11, 10640. [CrossRef] [Google Scholar]
- Zhao J., Liu L., Zhang Y., Wang X., Wu F. (2018) A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics, Environ. Pollut. 238, 121–129. https://doi.org/10.1016/j.envpol.2018.03.026. [CrossRef] [Google Scholar]
- Feather J.W., Ellis D.J., Leslie G. (1988) A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin, Phys. Med. Biol. 33, 711–722. [NASA ADS] [CrossRef] [Google Scholar]
- Crocombe R.A. (2018) Portable spectroscopy, Appl. Spectrosc. 72, 1701–1751. https://doi.org/10.1177/0003702818809719. [NASA ADS] [CrossRef] [Google Scholar]
- European Union (2008) DIRECTIVE 2008/56/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive), Official Journal of the European Union. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.