Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Article Number 3
Number of page(s) 11
Published online 13 January 2023
  1. Basharin A.A., Kafesaki M., Economou E.N., Soukoulis C.M., Fedotov V.A., Savinov V., Zheludev N.I. (2015) Dielectric metamaterials with toroidal dipolar response, Phys. Rev. X 5, 11. [Google Scholar]
  2. Keiser G.R., Fan K., Zhang X., Averitt R.D. (2013) Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: A review, J. Infrared Millim. Terahertz Waves 34, 709–723. [CrossRef] [Google Scholar]
  3. Andryieuski A., Lavrinenko A.V. (2013) Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach, Opt. Express 21, 9144–9155. [NASA ADS] [CrossRef] [Google Scholar]
  4. High A.A., Devlin R.C., Dibos A., Polking M., Wild D.S., Perczel J., de Leon N.P., Lukin M.D., Park H. (2015) Visible-frequency hyperbolic metasurface, Nature 522, 192–196. [NASA ADS] [CrossRef] [Google Scholar]
  5. Jiang Y., Liu Z.Y., Matsuhisa N., Qi D.P., Leow W.R., Yang H., Yu J.C., Chen G., Liu Y.Q., Wan C.J., Liu Z.J., Chen X.D. (2018) Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors, Adv. Mater. 30, 8. [Google Scholar]
  6. Wu B.I., Wang W., Pacheco J., Chen X., Grzegorczyk T., Kong J.A. (2005) A study of using metamaterials as antenna substrate to enhance gain, Prog. Electromagn. Res. 51, 295–328. [CrossRef] [Google Scholar]
  7. Chandra S., Franklin D., Cozart J., Safaei A., Chanda D. (2018) Adaptive multispectral infrared camouflage, ACS Photonics 5, 4513–4519. [CrossRef] [Google Scholar]
  8. Zou J., Zhang J., He Y., Hong Q., Quan C., Zhu Z. (2020) Multiband metamaterial selective absorber for infrared stealth, Appl. Opt. 59, 8768–8772. [NASA ADS] [CrossRef] [Google Scholar]
  9. Guo Y., Cortes C.L., Molesky S., Jacob Z. (2012) Broadband super-Planckian thermal emission from hyperbolic metamaterials, Appl. Phys. Lett. 101, 5. [NASA ADS] [Google Scholar]
  10. Wang B.X., He Y.H., Lou P.C., Zhu H.X. (2021) Multi-band terahertz superabsorbers based on perforated square-patch metamaterials, Nanoscale Adv. 3, 455–462. [NASA ADS] [CrossRef] [Google Scholar]
  11. Lee B.J., Wang L.P., Zhang Z.M. (2008) Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film, Opt. Express 16, 11328–11336. [NASA ADS] [CrossRef] [Google Scholar]
  12. Landy N.I., Sajuyigbe S., Mock J.J., Smith D.R., Padilla W.J. (2008) Perfect metamaterial absorber, Phys. Rev. Lett. 100, 4. [CrossRef] [Google Scholar]
  13. Motogaito A., Tanaka R., Hiramatsu K. (2021) Fabrication of perfect plasmonic absorbers for blue and near-ultraviolet lights using double-layer wire-grid structures, J. Eur. Opt. Soc. Rapid Publ. 17, 6. [CrossRef] [Google Scholar]
  14. Yu P., Yang H., Chen X., Yi Z., Yao W., Chen J., Yi Y., Wu P. (2020) Ultra-wideband solar absorber based on refractory titanium metal, Renew. Energy 158, 227–235. [CrossRef] [Google Scholar]
  15. Butun S., Aydin K. (2014) Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers, Opt. Express 22, 19457–19468. [NASA ADS] [CrossRef] [Google Scholar]
  16. Li Voti R. (2018) Optimization of a perfect absorber multilayer structure by genetic algorithms, J. Eur. Opt. Soc. Rapid Publ. 14, 12. [CrossRef] [Google Scholar]
  17. Li H., Peng H., Ji C., Lu L., Li Z., Wang J., Wu Z., Jiang Y., Xu J., Liu Z. (2018) Electrically tunable mid-infrared antennas based on VO2, J. Mod. Opt. 65, 1809–1816. [NASA ADS] [CrossRef] [Google Scholar]
  18. Liang J.R., Li P., Zhou L.W., Guo J.B., Zhao Y.R. (2018) Near-infrared tunable multiple broadband perfect absorber base on VO2 semi-shell arrays photonic microstructure and gold reflector, Mater. Res. Express 5, 8. [Google Scholar]
  19. Boardman A.D., Grimalsky V.V., Kivshar Y.S., Koshevaya S.V., Lapine M., Litchinitser N.M., Malnev V.N., Noginov M., Rapoport Y.G., Shalaev V.M. (2011) Active and tunable metamaterials, Laser Photonics Rev. 5, 287–307. [NASA ADS] [CrossRef] [Google Scholar]
  20. Pope S.A., Laalej H. (2014) A multi-layer active elastic metamaterial with tuneable and simultaneously negative mass and stiffness, Smart Mater. Struct. 23, 075020. [NASA ADS] [CrossRef] [Google Scholar]
  21. Oka Y., Yao T., Yamamoto N. (1991) Structural phase transition of VO2(B) to VO2(A), J. Mater. Chem. (UK) 1, 815–818. [CrossRef] [Google Scholar]
  22. Wang S., Kang L., Werner D.H. (2017) Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2), Sci. Rep. 7, 4326. [NASA ADS] [CrossRef] [Google Scholar]
  23. Cao B., Li Y., Liu X., Fei H., Zhang M., Yang Y. (2020) Switchable broadband metamaterial absorber/reflector based on vanadium dioxide rings, Appl. Opt. 59, 8111–8117. [NASA ADS] [CrossRef] [Google Scholar]
  24. Ban S.H., Meng H.Y., Zhai X., Xue X.X., Lin Q., Li H.J., Wang L.L. (2021) Tunable triple-band and broad-band convertible metamaterial absorber with bulk Dirac semimetal and vanadium dioxide, J. Phys. D Appl. Phys. 54, 6. [Google Scholar]
  25. Song X.L., Liu Z.Z., Scheuer J., Xiang Y.J., Aydin K. (2019) Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers, J. Phys. D Appl. Phys. 52, 7. [Google Scholar]
  26. Sakurai A., Zhao B., Zhang Z.M. (2014) Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model, J. Quant. Spectrosc. Radiat. Transf. 149, 33–40. [NASA ADS] [CrossRef] [Google Scholar]
  27. Dicken M.J., Aydin K., Pryce I.M., Sweatlock L.A., Boyd E.M., Walavalkar S., Ma J., Atwater H.A. (2009) Frequency tunable near-infrared metamaterials based on VO2 phase transition, Opt. Express 17, 18330–18339. [NASA ADS] [CrossRef] [Google Scholar]
  28. Lei L., Lou F., Tao K.Y., Huang H.X., Cheng X., Xu P. (2019) Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition, Photonics Res. 7, 734–741. [CrossRef] [Google Scholar]
  29. Liu Z., Liu G., Liu X., Wang Y., Fu G. (2018) Titanium resonators based ultra-broadband perfect light absorber, Opt. Mater. 83, 118–123. [NASA ADS] [CrossRef] [Google Scholar]
  30. Farsinezhad S., Shanavas T., Mahdi N., Askar A.M., Kar P., Sharma H., Shankar K. (2018) Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances, Nanotechnology 29, 154006. [NASA ADS] [CrossRef] [Google Scholar]
  31. Oh K.W., Ahn C.H. (1999) A new flip-chip bonding technique using micromachined conductive polymer bumps, IEEE Trans. Adv. Packag. 22, 586–591. [CrossRef] [Google Scholar]
  32. van Soest F.J., van Wolferen H., Hoekstra H., de Ridder R.M., Worhoff K., Lambeck P.V. (2005) Laser interference lithography with highly accurate interferometric alignment, Jpn. J. Appl. Phys. 44, 6568–6570. [NASA ADS] [CrossRef] [Google Scholar]
  33. Wang H.-Y., Wu Z.-H. (2006) Study on the alignment technology process of double-sided lithography on glass substrate, Semicond. Technol. (China) 31, 576–578. [Google Scholar]
  34. Lynch D.W., Hunter W.R. (1997) , in: Palik E.D. (ed.), Handbook of Optical Constants of Solids, Academic Press, Burlington. [Google Scholar]
  35. Duan G., Schalch J., Zhao X., Zhang J., Averitt R.D., Zhang X. (2018) Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies, Opt. Express 26, 2242–2251. [NASA ADS] [CrossRef] [Google Scholar]
  36. Zhou P., Zheng G., Chen Y., Xu L., Xian F. (2019) Dynamically tunable perfect absorption based on the phase transition of vanadium dioxide with aluminum hole arrays, Solid State Commun. 288, 48–52. [NASA ADS] [CrossRef] [Google Scholar]
  37. Luo Y., Liang Z., Meng D., Tao J., Liang J., Chen C., Lai J., Qin Y., Lv J., Zhang Y. (2019) Ultra-broadband and high absorbance metamaterial absorber in long wavelength infrared based on hybridization of embedded cavity modes, Opt. Commun. 448, 1–9. [NASA ADS] [CrossRef] [Google Scholar]
  38. Chen H.-T. (2012) Interference theory of metamaterial perfect absorbers, Opt. Express 20, 7165–7172. [NASA ADS] [CrossRef] [Google Scholar]
  39. Oh D.W., Ko C., Ramanathan S., Cahill D.G. (2010) Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2, Appl. Phys. Lett. 96, 3. [Google Scholar]
  40. Hou D., Yuan L.U., Liu Z., Jie H.U.J.M.R. (2017) Temperature rising in VO2 thin films under irradiation of mid-infrared laser based on external heat source, Mater. Rev. 31, 91–95. [Google Scholar]
  41. Cheng C.-W., Abbas M.N., Chiu C.-W., Lai K.-T., Shih M.-H., Chang Y.-C. (2012) Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays, Opt. Express 20, 10376–10381. [NASA ADS] [CrossRef] [Google Scholar]
  42. Zhao W.Q., Li Y., Tian R., Li J.X., Fan L.N., Zhou J.Z., Liu J., Zhang X., Peng C., Wu Y.D., Zou M.D. (2020) A dynamically temperature tunable broadband infrared absorber with cross square nanocolumn arrays, Opt. Commun. 474, 7. [Google Scholar]
  43. Kocer H., Butun S., Palacios E., Liu Z., Tongay S., Fu D., Wang K., Wu J., Aydin K. (2015) Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films, Sci. Rep. 5, 13384. [NASA ADS] [CrossRef] [Google Scholar]
  44. Moradi T., Hatef A. (2020) Thermal tracing of a highly reconfigurable and wideband infrared heat sensor based on vanadium dioxide, J. Appl. Phys. 127, 9. [Google Scholar]
  45. Zou M.D., Li Y., Zhao W.Q., Zhang X., Wu Y.D., Peng C., Fan L.N., Li J.X., Yan J.Y., Zhuang J.Q., Mei J.C., Wang X.P. (2021) Dynamically tunable perfect absorber based on VO2-Au hybrid nanodisc array, Opt. Eng. 60, 11. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.