EOSAM 2022
Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
EOSAM 2022
Article Number 2
Number of page(s) 5
DOI https://doi.org/10.1051/jeos/2022015
Published online 13 January 2023
  1. Zhao J., Zhao Y., Peng Y., Lv R.-Q., Zhao Q. (2022) Review of femtosecond laser direct writing fiber-optic structures based on refractive index modification and their applications, Opt. Laser Technol. 146, 107473. [NASA ADS] [CrossRef] [Google Scholar]
  2. Chen M., He T., Zhao Y. (2022) Review of femtosecond laser machining technologies for optical fiber microstructures fabrication, Opt. Laser Technol. 147, 107628. [NASA ADS] [CrossRef] [Google Scholar]
  3. Chen P.C., Shu X.W., Cao H.Y., Sugden K. (2017) Ultra-sensitive refractive index sensor based on extremely simple femtosecond-laser-induced structure, Opt. Lett. 42, 6, 1157–1160. [NASA ADS] [CrossRef] [Google Scholar]
  4. Deng J., Wang D.N. (2019) Ultra-sensitive strain sensor based on femtosecond laser inscribed in-fiber reflection mirrors and Vernier effect, J. Light. Technol. 37, 19, 4935–4939. [NASA ADS] [CrossRef] [Google Scholar]
  5. Yakushin S.S., Wolf A.A., Dostovalov A.V., Skvortsov M.I., Wabnitz S., Babin S.A. (2018) A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber, Opt. Fiber Technol. 43, 101–105. [NASA ADS] [CrossRef] [Google Scholar]
  6. Leal-Junior A.G., Theodosiou A., Díaz C.R., Marques C., José Pontes M., Kalli K., Frizera A. (2019) Simultaneous measurement of axial strain, bending and torsion with a single fiber Bragg grating in CYTOP fiber, J. Light. Technol. 37, 3, 971–980. [NASA ADS] [CrossRef] [Google Scholar]
  7. Perez-Herrera R.A., Bravo M., Roldan-Varona P., Leandro D., Rodriguez-Cobo L., Lopez-Higuera J.M., Lopez-Amo M. (2021) Microdrilled tapers to enhance optical fiber lasers for sensing, Sci. Rep. 11, 20408. [NASA ADS] [CrossRef] [Google Scholar]
  8. Shen F.C., Zhou K., Zhang L., Shu X.W. (2016) Switchable dual-wavelength erbium doped fibre laser utilizing two-channel fibre Bragg grating fabricated by femtosecond laser, Laser Phys. 26, 105103. [NASA ADS] [CrossRef] [Google Scholar]
  9. Lei L., Li H., Shi J., Hu Q., Zhao X., Wu B., Wang M., Wang Z. (2021) Miniature Fabry-Perot cavity based on fiber Bragg gratings fabricated by Fs laser micromachining technique, Nanomaterials 11, 2505. [Google Scholar]
  10. Kondo Y., Nouchi K., Mitsuyu T., Watanabe M., Kazansky P.G., Hirao K. (1999) Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses, Opt. Lett. 24, 10, 646–648. [CrossRef] [PubMed] [Google Scholar]
  11. Bharathan G., Hudson D.D., Woodward R.I., Jackson S.D., Fuerbach A. (2018) In-fiber polarizer based on a 45-degree tilted fluoride fiber Bragg grating for mid-infrared fiber laser technology, OSA Contin. 1, 1, 56–63. [CrossRef] [Google Scholar]
  12. Zhang Y.F., Lin C., Liao C., Yang K., Li Z., Wang Y. (2018) Femtosecond laser-inscribed fiber interface Mach-Zehnder interferometer for temperature-insensitive refractive index measurement, Opt. Lett. 43, 18, 4421–4424. [NASA ADS] [CrossRef] [Google Scholar]
  13. Liu Y., Wang D.N. (2018) Fiber in-line Michelson interferometer based on inclined narrow slit crossing the fiber core, IEEE Photon. Technol. Lett. 30, 3, 293–296. [NASA ADS] [CrossRef] [Google Scholar]
  14. Pallarés-Aldeiturriaga D., Rodríguez-Cobo L., Quintela A., López-Higuera J.M. (2017) Curvature sensor based on in-fiber Mach–Zehnder interferometer inscribed with femtosecond laser, J. Light. Technol. 35, 21, 4624–4628. [CrossRef] [Google Scholar]
  15. Lin C., Liao C., Zhang Y., Xu L., Wang Y., Fu C., Yang K., Wang J., Hea J., Wang Y. (2018) Optofluidic gutter oil discrimination based on hybrid-waveguide coupler in fiber, Lab Chip 18, 4, 595–600. [CrossRef] [Google Scholar]
  16. Huang B., Shu X.W. (2018) Highly sensitive torsion sensor with femtosecond laser-induced low birefringence single-mode fiber based Sagnac interferometer, Opt. Express 26, 4, 4563–4571. [NASA ADS] [CrossRef] [Google Scholar]
  17. Budinski V., Donlagic D. (2017) Fiber-optic sensors for measurements of torsion, twist and rotation: A review, Sensors 17, 443. [NASA ADS] [CrossRef] [Google Scholar]
  18. Smith A.M. (1980) Birefringence induced by bends and twists in single-mode optical fiber, Appl. Opt. 19, 2606–2611. [NASA ADS] [CrossRef] [Google Scholar]
  19. Ulrich R., Simon A. (1979) Polarization optics of twisted single-mode fibers, Appl. Opt. 18, 2241–2251. [NASA ADS] [CrossRef] [Google Scholar]
  20. Ross J.N. (1984) The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects, Opt. Quant. Electron. 16, 455–461. [CrossRef] [Google Scholar]
  21. Napiorkowski M., Urbanczyk W. (2021) Rigorous modeling of twisted anisotropic optical fibers with transformation optics formalism, Opt. Express 29, 15199–15216. [NASA ADS] [CrossRef] [Google Scholar]
  22. Bernas M., Zolnacz K., Napiorkowski M., Statkiewicz-Barabach G., Urbanczyk W. (2021) Conversion of LP11 modes to vortex modes in a gradually twisted highly birefringent optical fiber, Opt. Lett. 46, 4446–4449. [NASA ADS] [CrossRef] [Google Scholar]
  23. Yiping W., Wang M., Huang X. (2013) In fiber Bragg grating twist sensor based on analysis of polarization dependent loss, Opt. Express 21, 11913–11920. [NASA ADS] [CrossRef] [Google Scholar]
  24. Roldán-Varona P., Lomer M., Algorri J.F., Rodríguez-Cobo L., López-Higuera J.M. (2022) Enhanced refractometer for aqueous solutions based on perfluorinated polymer optical fibres, Opt. Express 30, 1397–1409. [CrossRef] [Google Scholar]
  25. Perez-Herrera R.A., Roldan-Varona P., Rodriguez Cobo L., Lopez-Higuera J.M., Lopez-Amo M. (2021) Single longitudinal mode lasers by using artificially controlled backscattering erbium doped fibers, IEEE Access 9, 27428–27433. [CrossRef] [Google Scholar]
  26. Perez-Herrera R.A., Stancalie A., Cabezudo P., Sporea D., Neguţ D., Lopez-Amo M. (2020) Gamma radiation-induced effects over an optical fiber laser: Towards new sensing applications, Sensors 20, 3017. [NASA ADS] [CrossRef] [Google Scholar]
  27. Perez-Herrera R.A., Pallarés-Aldeiturriaga D., Júdez A., Rodriguez Cobo L., Lopez-Amo M., Lopez-Higuera J.M. (2019) Optical fiber lasers assisted by microdrilled optical fiber tapers, Opt. Lett. 44, 2669–2672. [CrossRef] [Google Scholar]
  28. Perez-Herrera R.A., Fernandez-Vallejo M., Diaz S., Angeles Quintela M., Lopez-Amo M., López-Higuera J.M. (2010) Stability comparison of two quadruple-wavelength switchable erbium-doped fiber lasers, Opt. Fiber Technol. 16, 4, 205–211. [NASA ADS] [CrossRef] [Google Scholar]
  29. Perez-Herrera R.A., Roldan-Varona P., Galarza M., Sañudo-Lasagabaster S., Rodriguez-Cobo L., Lopez-Higuera J.M., Lopez-Amo M. (2021) Hybrid Raman-erbium random fiber laser with a half open cavity assisted by artificially controlled backscattering fiber reflectors, Sci. Rep. 11, 9169. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.