Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Article Number 4
Number of page(s) 6
DOI https://doi.org/10.1051/jeos/2022016
Published online 17 January 2023
  1. Winzer P.J., Neilson D.T., Chraplyvy A.R. (2018) Fiber-optic transmission and networking: the previous 20 and the next 20 years, Opt. Exp. 26, 18, 24190–24239. [NASA ADS] [CrossRef] [Google Scholar]
  2. Ferrari A., Napoli A., Fischer J.K., Costa N., D’Amico A., Pedro J., Forysiak W., Pincemin E., Lord A., Stavdas A., Gimenez J.P.F.-P., Roelkens G., Calabretta N., Abrate S., Sommerkorn-Krombholz B., Curri V. (2020) Assessment on the achievable throughput of multi-band ITU-T G. 652.D fiber transmission systems, J. Lightwave Technol. 38, 16, 4279–4291. [NASA ADS] [CrossRef] [Google Scholar]
  3. Ellis A.D., Zhao J., Cotter D. (2009) Approaching the non-linear shannon limit, J. Lightwave Technol. 28, 4, 423–433. [Google Scholar]
  4. Boley C.D., Dawson J.W., Kiani L.S., Pax P.H. (2019) E-band neodymium-doped fiber amplifier: model and application, Appl. Opt. 58, 9, 2320–2327. [NASA ADS] [CrossRef] [Google Scholar]
  5. Chen S., Jung Y., Alam S.-U., Richardson D.J., Sidharthan R., Ho D., Yoo S., Daniel J.M. (2019) Ultra-short wavelength operation of thulium-doped fiber amplifiers and lasers, Opt. Express 27, 25, 36699–36707. [NASA ADS] [CrossRef] [Google Scholar]
  6. Mikhailov V., Luo J., Inniss D., Yan M., Sun Y., Puc G.S., Windeler R.S., Westbrook P.S., Dulashko Y., DiGiovanni D.J. (2020) Amplified transmission beyond C-and L-bands: doped fibre amplifiers for 1250–1450 nm range, in 2020 European Conference on Optical Communications (ECOC), IEEE, pp. 1–3. [Google Scholar]
  7. Donodin A., Dvoyrin V., Manuylovich E., Krzczanowicz L., Forysiak W., Melkumov M., Mashinsky V., Turitsyn S. (2021) Bismuth doped fibre amplifier operating in E-and S-optical bands, Opt. Mater. Express 11, 1, 127–135. [CrossRef] [Google Scholar]
  8. Wang Y., Thipparapu N.K., Richardson D.J., Sahu J.K. (2021) Ultra-broadband bismuth-doped fiber amplifier covering a 115-nm bandwidth in the O and E bands, J. Lightwave Technol. 39, 3, 795–800. [NASA ADS] [CrossRef] [Google Scholar]
  9. Bufetov I.A., Melkumov M.A., Firstov S.V., Riumkin K.E., Shubin A.V., Khopin V.F., Guryanov A.N., Dianov E.M. (2014) Bi-doped optical fibers and fiber lasers, IEEE J. Sel. Top. Quantum Electron. 20, 5, 111–125. [NASA ADS] [CrossRef] [Google Scholar]
  10. Melkumov M.A., Mikhailov V., Khegai A.M., Riumkin K.E., Firstov S.V., Afanasiev F., Guryanov A.N., Yan M., Sun Y., Luo J., et al. (2018) 25 Gb s−1 data transmission using a bismuth-doped fibre amplifier with a gain peak shifted to 1300 nm, Quantum Electron. 48, 11, 989. [NASA ADS] [CrossRef] [Google Scholar]
  11. Melkumov M., Mikhailov V., Hegai A., Riumkin K., Westbrook P., DiGiovanni D., Dianov E. (2017) E-band data transmission over 80 km of non-zero dispersion fibre link using bismuth-doped fibre amplifier, Electron. Lett. 53, 25, 1661–1663. [NASA ADS] [CrossRef] [Google Scholar]
  12. Donodin A., Tan M., Hazarika P., Dvoyrin V., Phillips I., Harper P., Turitsyn S.K., Forysiak W. (2022) 30-GBaud dp 16-QAM transmission in the E-band enabled by bismuth-doped fiber amplifiers, Opt. Lett. 47, 19, 5152–5155. [NASA ADS] [CrossRef] [Google Scholar]
  13. Donodin A., Hazarika P., Tan M., Dvoyrin V., Patel M., Phillips I., Harper P., Turitsyn S., Forysiak W. (2022) 195-nm multi-band amplifier enabled by bismuth-doped fiber and discrete Raman amplification, in 2022 European Conference on Optical Communication (ECOC), 18–22 September 2022, Basel Switzerland, IEEE, p. 1–2. [Google Scholar]
  14. Ososkov Y., Khegai A., Firstov S., Riumkin K., Alyshev S., Kharakhordin A., Lobanov A., Guryanov A., Melkumov M. (2021) Pump-efficient flattop O+E-bands bismuth-doped fiber amplifier with 116 nm−3 dB gain bandwidth, Opt. Exp. 29, 26, 44138–44145. [NASA ADS] [CrossRef] [Google Scholar]
  15. Donodin A., Dvoyrin V., Manuylovich E., Phillips I., Forysiak W., Melkumov M., Mashinsky V., Turitsyn S. (2021) 4-channel E-band data transmission over 160 km of SMF-28 using a bismuth-doped fibre amplifier, in 2021 Optical Fiber Communications Conference and Exhibition (OFC), 06–10 June 2021, San Francisco, CA, USA, IEEE, pp. 1–3. [Google Scholar]
  16. Ionescu M., Ghazisaeidi A., Renaudier J., Pecci P., Courtois O. (2020) Design optimisation of power-efficient submarine line through machine learning, in 2020 Conference on Lasers and Electro-Optics (CLEO), Washington, DC United States, Washington, DC United States, 10–15 May, pp. 1–2. [Google Scholar]
  17. Yankov M.P., De Moura U.C., Da Ros F. (2021) Power evolution modeling and optimization of fiber optic communication systems with edfa repeaters, J. Lightwave Technol. 39, 3154–3161. https://doi.org/10.1109/JLT.2021.3061632. [NASA ADS] [CrossRef] [Google Scholar]
  18. Zibar D., Brusin A.M.R., de Moura U.C., Da Ros F., Curri V., Carena A. (2019) Inverse system design using machine learning: the Raman amplifier case, J. Lightwave Technol. 38, 4, 736–753. [Google Scholar]
  19. De Moura U.C., Iqbal M.A., Kamalian M., Krzczanowicz L., Da Ros F., Brusin A.M.R., Carena A., Forysiak W., Turitsyn S., Zibar D. (2020) Multi-band programmable gain Raman amplifier, J. Lightwave Technol. 39, 2, 429–438. [Google Scholar]
  20. Baney D.M., Gallion P., Tucker R.S. (2000) Theory and measurement techniques for the noise figure of optical amplifiers, Opt. Fiber Technol. 6, 2, 122–154. [NASA ADS] [CrossRef] [Google Scholar]
  21. Huang G.-B., Wang D.H., Lan Y. (2011) Extreme learning machines: a survey, Int. J. Mach. Learn. Cyb. 2, 2, 107–122. https://doi.org/10.1007/s13042-011-0019-y. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.