Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
Article Number 20
Number of page(s) 8
DOI https://doi.org/10.1186/s41476-021-00167-6
Published online 18 September 2021
  1. Rogalski, A.: HgCdTe photodetectors. Woodhead Publishing Series in Electronic and Optical Materials, 235–335 (2020). https://doi.org/10.1016/B978-0-08-102709-7.00007-3. https://www.sciencedirect.com/science/article/pii/B9780081027097000073. Accessed 19 Apr 2021. [Google Scholar]
  2. Klipstein P., Aronov D., Ezra M. b., Barkai I., Berkowicz E., Brumer M., Fraenkel R., Glozman A., Grossman S., Jacobsohn E., Klin O., Lukomsky I., Shkedy L., Shtrichman I., Snapi N., Yassen M., Weiss E., Recent progress in InSb based quantum detectors in Israel. Infrared Phys. Technol. (2013) 59, 172–181. https://doi.org/10.1016/j.infrared.2012.12.035https://doi.org/10.1016/j.infrared.2012.12.035. Accessed 20 Apr 2021 [NASA ADS] [CrossRef] [Google Scholar]
  3. Rogalski A., Quantum well photoconductors in infrared detector technology. J. Appl. Phys. (2003) 93, 4355–4391. https://doi.org/10.1063/1.1558224https://doi.org/10.1063/1.1558224 [NASA ADS] [CrossRef] [Google Scholar]
  4. Choi K. K., Jhabvala M. D., Sun J., Jhabvala C. A., Waczynski A., Olver K., Resonator-quantum well infrared photodetectors. Appl. Phys. Lett. (2013) 103, 20201113. https://doi.org/10.1063/1.4831797https://doi.org/10.1063/1.4831797. Publisher: American Institute of Physics. Accessed 20 Apr 2021 [NASA ADS] [CrossRef] [Google Scholar]
  5. Ivanov, R., Smuk, S., Hellström, S., Evans, D., Höglund, L., Costard, E.: LWIR QWIPs at IRnova for next generation polarimetric imaging. Infrared Phys. Technol. 95 (2018). https://doi.org/10.1016/j.infrared.2018.10.017. [Google Scholar]
  6. Rogalski, A., Kopytko, M., Martyniuk, P.: InAs/GaSb type-II superlattice infrared detectors: three decades of development, p. 1017715 (2017). https://doi.org/10.1117/12.2272817. [Google Scholar]
  7. Rogalski A., Martyniuk P., Kopytko M., Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quantum Electron. (2019) 68, 100228. https://doi.org/10.1016/j.pquantelec.2019.100228https://doi.org/10.1016/j.pquantelec.2019.100228. Accessed 19 Apr 2021 [NASA ADS] [CrossRef] [Google Scholar]
  8. Rogalski A., Martyniuk P., Kopytko M., Hu W., Trends in Performance Limits of the HOT Infrared Photodetectors. Appl. Sci. (2021) 11, 2501. https://doi.org/10.3390/app11020501https://doi.org/10.3390/app11020501. Accessed 08 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  9. Langrock C., Diamanti E., Roussev R. V., Yamamoto Y., Fejer M. M., Takesue H., Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO 3 waveguides. Opt. Lett. (2005) 30, 131725–1727. https://doi.org/10.1364/OL.30.001725https://doi.org/10.1364/OL.30.001725. Publisher: Optical Society of America. Accessed 22 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  10. Boitier F., Godard A., Rosencher E., Fabre C., Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors. Nat. Phys. (2009) 5, 4267–270. https://doi.org/10.1038/nphys1218https://doi.org/10.1038/nphys1218. Number: 4 Publisher: Nature Publishing Group. Accessed 14 Jan 2021 [CrossRef] [Google Scholar]
  11. Fishman D. A., Cirloganu C. M., Webster S., Padilha L. A., Monroe M., Hagan D. J., Van Stryland E. W., Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption. Nat. Photon. (2011) 5, 9561–565. https://doi.org/10.1038/nphoton.2011.168https://doi.org/10.1038/nphoton.2011.168. Number: 9 Publisher: Nature Publishing Group. Accessed 19 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  12. Portier B., Vest B., Pardo F., Péré-Laperne N., Steveler E., Jaeck J., Dupuis C., Bardou N., Lemaître A., Rosencher E., Haïdar R., Pelouard J. -L., Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode. Appl. Phys. Lett. (2014) 105, 1011108. https://doi.org/10.1063/1.4887375https://doi.org/10.1063/1.4887375. Publisher: American Institute of Physics. Accessed 14 Jan 2021 [NASA ADS] [CrossRef] [Google Scholar]
  13. Hutchings D. C., Stryland E. W. V., Nondegenerate two-photon absorption in zinc blende semiconductors. JOSA B (1992) 9, 112065–2074. https://doi.org/10.1364/JOSAB.9.002065https://doi.org/10.1364/JOSAB.9.002065. Publisher: Optical Society of America. Accessed 10 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  14. Stryland E. W. V., Woodall M. A., Vanherzeele H., Soileau M. J., Energy band-gap dependence of two-photon absorption. Opt. Lett. (1985) 10, 10490–492. https://doi.org/10.1364/OL.10.000490https://doi.org/10.1364/OL.10.000490. Publisher: Optical Society of America. Accessed 09 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  15. Nga Chen Y., Todorov Y., Askenazi B., Vasanelli A., Biasiol G., Colombelli R., Sirtori C., Antenna-coupled microcavities for enhanced infrared photo-detection. Appl. Phys. Lett. (2014) 104, 3031113. https://doi.org/10.1063/1.4862750https://doi.org/10.1063/1.4862750. Accessed 09 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  16. Koechlin C., Bouchon P., Pardo F., Pelouard J. -L., Haïdar R., Analytical description of subwavelength plasmonic MIM resonators and of their combination. Opt. Express (2013) 21, 67025. https://doi.org/10.1364/OE.21.007025https://doi.org/10.1364/OE.21.007025. Accessed 04 Jan 2021 [NASA ADS] [CrossRef] [Google Scholar]
  17. Verdun M., Portier B., Jaworowicz K., Jaeck J., Lelarge F., Guilet S., Dupuis C., Haïdar R., Pardo F., Pelouard J. -L., Guided-mode resonator for thin InGaAs P-i-N short-wave infrared photo-diode. Appl. Phys. Lett. (2016) 108, 5053501. https://doi.org/10.1063/1.4941297https://doi.org/10.1063/1.4941297. Accessed 09 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  18. Fabas, A., El Ouazzani, H., Hugonin, J. -P., Haïdar, R., Greffet, J. -J., Bouchon, P.: Helmholtz-like Nanoresonators Applied to Surface Enhanced Infrared Absorption. In: Metamaterials 2019, Rome (2019). https://hal.archives-ouvertes.fr/hal-02409551. Accessed 29 Apr 2021. [Google Scholar]
  19. Palaferri D., Todorov Y., Bigioli A., Mottaghizadeh A., Gacemi D., Calabrese A., Vasanelli A., Li L., Davies A. G., Linfield E. H., Kapsalidis F., Beck M., Faist J., Sirtori C., Room-temperature nine- μm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature (2018) 556, 769985–88. https://doi.org/10.1038/nature25790https://doi.org/10.1038/nature25790. Accessed 09 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  20. Miyazaki, H. T., Mano, T., Kasaya, T., Osato, H., Watanabe, K., Sugimoto, Y., Kawazu, T., Arai, Y., Shigetou, A., Ochiai, T., Jimba, Y., Miyazaki, H.: Synchronously wired infrared antennas for resonant single-quantum-well photodetection up to room temperature. 10 (2020). https://doi.org/10.1038/s41467-020-14426-6. [Google Scholar]
  21. Hakl M., Lin Q., Lepillet S., Billet M., Lampin J. -F., Pirotta S., Colombelli R., Wan W., Cao J. C., Li H., Peytavit E., Barbieri S., Ultrafast Quantum-Well Photodetectors Operating at 10 um with a Flat Frequency Response up to 70 GHz at Room Temperature. ACS Photonics (2021) 8, 2464–471. https://doi.org/10.1021/acsphotonics.0c01299https://doi.org/10.1021/acsphotonics.0c01299. Publisher: American Chemical Society. Accessed 09 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  22. Fix B., Jaeck J., Vest B., Verdun M., Beaudoin G., Sagnes I., Pelouard J. -L., Haïdar R., Nanostructured diode for infrared photodetection through nondegenerate two-photon absorption. Appl. Phys. Lett. (2017) 111, 4041102. https://doi.org/10.1063/1.4996369https://doi.org/10.1063/1.4996369. Accessed 04 Feb 2021 [NASA ADS] [CrossRef] [Google Scholar]
  23. Xu G., Ren X., Miao Q., Yan M., Pan H., Chen X., Wu G., Wu E., Sensitive Infrared Photon Counting Detection by Nondegenerate Two-Photon Absorption in Si APD. IEEE Photon. Technol. Lett. (2019) 31, 241944–1947. https://doi.org/10.1109/LPT.2019.2950542https://doi.org/10.1109/LPT.2019.2950542 [NASA ADS] [CrossRef] [Google Scholar]
  24. Fang J., Wang Y., Yan M., Wu E., Huang K., Zeng H., Highly Sensitive Detection of Infrared Photons by Nondegenerate Two-Photon Absorption Under Midinfrared Pumping. Phys. Rev. Appl. (2020) 14, 6064035. https://doi.org/10.1103/PhysRevApplied.14.064035https://doi.org/10.1103/PhysRevApplied.14.064035. Accessed 09 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  25. Bouchon P., Pardo F., Haïdar R., Pelouard J. -L., Fast modal method for subwavelength gratings based on B-spline formulation. J. Opt. Soc. Am. A (2010) 27, 4696. https://doi.org/10.1364/JOSAA.27.000696https://doi.org/10.1364/JOSAA.27.000696. Accessed 03 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  26. Levinshtein, M., Rumyantsev, S., Shur, M.: Handbook Series on Semiconductor Parameters: Volume 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb. vol. 1. World Scientific (1996). https://doi.org/10.1142/2046-vol1. https://www.worldscientific.com/worldscibooks/10.1142/2046-vol1. Accessed 12 Mar 2021. [Google Scholar]
  27. Vavilov V. S., Handbook on the physical properties of Ge, Si, GaAs and InP by A Dargys and J Kundrotas. Physics-Uspekhi (1996) 39, 7757–757. https://doi.org/10.1070/PU1996v039n07ABEH001526https://doi.org/10.1070/PU1996v039n07ABEH001526. Accessed 12 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  28. Nayak S. K., Sahu T., Mohanty S. P., Third-order nonlinear optical susceptibilities of group IV and III–V compound semiconductors. Phys. B: Condens. Matter (1993) 191, 3334–340. https://doi.org/10.1016/0921-4526(93)90093-Lhttps://doi.org/10.1016/0921-4526(93)90093-L. Accessed 20 Apr 2021 [CrossRef] [Google Scholar]
  29. Vest B., Fix B., Jaeck J., Haïdar R., Competition between sub-bandgap linear detection and degenerate two-photon absorption in gallium arsenide photodiodes. J. Eur. Opt. Society-Rapid Publ. (2016) 12, 126. https://doi.org/10.1186/s41476-016-0022-8https://doi.org/10.1186/s41476-016-0022-8. Accessed 04 Feb 2021 [CrossRef] [Google Scholar]
  30. Vest B., Lucas E., Jaeck J., Haïdar R., Rosencher E., Silicon sub-bandgap photon linear detection in two-photon experiments: A photo-assisted Shockley-Read-Hall mechanism. Appl. Phys. Lett. (2013) 102, 3031105. https://doi.org/10.1063/1.4788705https://doi.org/10.1063/1.4788705. Publisher: American Institute of Physics. Accessed 14 Jan 2021 [NASA ADS] [CrossRef] [Google Scholar]
  31. Piccardo M., Rubin N. A., Meadowcroft L., Chevalier P., Yuan H., Kimchi J., Capasso F., Mid-infrared two-photon absorption in an extended-wavelength InGaAs photodetector. Appl. Phys. Lett. (2018) 112, 4041106. https://doi.org/10.1063/1.5018619https://doi.org/10.1063/1.5018619. Accessed 09 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  32. Cirloganu C. M., Padilha L. A., Fishman D. A., Webster S., Hagan D. J., Stryland E. W. V., Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited]. Opt. Express (2011) 19, 2322951–22960. https://doi.org/10.1364/OE.19.022951https://doi.org/10.1364/OE.19.022951. Publisher: Optical Society of America. Accessed 10 Mar 2021 [NASA ADS] [CrossRef] [Google Scholar]
  33. Fix B., Jaeck J., Bouchon P., Héron S., Vest B., Haïdar R., High-quality-factor double Fabry-Perot plasmonic nanoresonator. Opt. Lett. (2017) 42, 245062–5065. https://doi.org/10.1364/OL.42.005062https://doi.org/10.1364/OL.42.005062. Publisher: Optical Society of America. Accessed 22 Mar 2021 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.