Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
EOS Annual Meeting (EOSAM) 2020
Article Number 19
Number of page(s) 16
DOI https://doi.org/10.1186/s41476-021-00166-7
Published online 09 September 2021
  1. Bai N., Ip E., Huang Y. -K., Mateo E., Yaman F., Li M. -J., Bickham S., Ten S., Liñares J., Montero C., Moreno V., Prieto X., Tse V., Chung K. M., Lau A. P. T., Tam H. -Y., Lu C., Luo Y., Peng G. -D., Li G., Wang T., Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express (2012) 20, 32668–2680. https://doi.org/10.1364/OE.20.002668 [NASA ADS] [CrossRef] [Google Scholar]
  2. Saitoh K., Matsuo S., Multicore fiber technology. J. Lightwave Tech. (2016) 34, 55–66. https://doi.org/10.1109/JLT.2015.2466444 [NASA ADS] [CrossRef] [Google Scholar]
  3. Cañas G., Vera N., Cariñe J., González P., Cardenas J., Connolly P. W. R., Przysiezna A., Gómez E. S., Figueroa M., Vallone G., Villoresi P., da Silva T. F., Xavier G. B., Lima G., High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Phys. Rev. A (2017) 96, 022317. https://doi.org/10.1103/PhysRevA.96.022317https://doi.org/10.1103/PhysRevA.96.022317 [CrossRef] [Google Scholar]
  4. Ding Y., Bacco D., Dalgaard K., Cai X., Zhou X., Rottwitt K., Oxenløwe L. K., High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. (2017) 3, 25. https://doi.org/10.1038/s41534-017-0026-2 [NASA ADS] [CrossRef] [Google Scholar]
  5. Bacco D., Da Lio B., Cozzolino D., Da Ros F., Guo X., Ding Y., Sasaki Y., Aikawa K., Miki S., Terai H., Yamashita T., Neergaard-Nielsen J. S., Galili M., Rottwitt K., Andersen U. L., Morioka T., Oxenløwe L. K., Boosting the secret key rate in a shared quantum and classical fibre communication system. Commun. Phys. (2019) 2, 140. https://doi.org/10.1038/s42005-019-0238-1 [NASA ADS] [CrossRef] [Google Scholar]
  6. Xavier G. B., Lima G., Quantum information processing with space-division multiplexing optical fibres. Commun. Phys. (2020) 3, 140. https://doi.org/10.1038/s42005-019-0269-7 [NASA ADS] [CrossRef] [Google Scholar]
  7. Gisin N., Ribordy G., Tittel W., Zbinden H., Quantum cryptography. Rev. Mod. Phys. (2002) 74, 145–195. https://doi.org/10.1103/RevModPhys.74.145 [Google Scholar]
  8. Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J., Razavi, M., Shaari, J. S., Tomamichel, M., Usenko, V. C., Vallone, G., Villoresi, P., Wallden, P.: Advances in Quantum Cryptography (2019). http://arxiv.org/abs/1906.01645. [Google Scholar]
  9. Zhao Y., Fung C. -H. F., Qi B., Chen C., Lo H. -K., Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A (2008) 78, 042333. https://doi.org/10.1103/PhysRevA.78.042333 [NASA ADS] [CrossRef] [Google Scholar]
  10. Lydersen L., Wiechers C., Wittmann C., Elser D., Skaar J., Makarov V., Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics (2010) 4, 10686–689. https://doi.org/10.1038/nphoton.2010.214 [NASA ADS] [CrossRef] [Google Scholar]
  11. Gerhardt I., Liu Q., Lamas-Linares A., Skaar J., Kurtsiefer C., Makarov V., Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. (2011) 2, 349. https://doi.org/10.1038/ncomms1348https://doi.org/10.1038/ncomms1348 [NASA ADS] [CrossRef] [Google Scholar]
  12. Lo H. -K., Curty M., Qi B., Measurement-device-independent quantum key distribution. Phys. Rev. Lett. (2012) 108, 130503. https://doi.org/10.1103/PhysRevLett.108.130503 [NASA ADS] [CrossRef] [Google Scholar]
  13. Hwang W. -Y., Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. (2003) 91, 057901. https://doi.org/10.1103/PhysRevLett.91.057901 [Google Scholar]
  14. Dellantonio L., Sørensen A. S., Bacco D., High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Phys. Rev. A (2018) 98, 062301. https://doi.org/10.1103/PhysRevA.98.062301https://doi.org/10.1103/PhysRevA.98.062301 [NASA ADS] [CrossRef] [Google Scholar]
  15. Xu F., Curty M., Qi B., Lo H. -K., Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. (2013) 15, 11113007. https://doi.org/10.1088/1367-2630/15/11/113007 [CrossRef] [Google Scholar]
  16. Yan H., Li S., Xie Z., Zheng X., Zhang H., Zhou B., Design of panda ring-core fiber with 10 polarization-maintaining modes. Photon. Res. (2017) 5, 1–5. https://doi.org/10.1364/PRJ.5.000001 [Google Scholar]
  17. Bethune D. S., Risk W. P., Autocompensating quantum cryptography. New J. Phys. (2002) 4, 42–42. https://doi.org/10.1088/1367-2630/4/1/342 [NASA ADS] [CrossRef] [Google Scholar]
  18. Balado D., Liñares J., Prieto-Blanco X., Barral D., Phase and polarization autocompensating N-dimensional quantum cryptography in multicore optical fibers. JOSA B (2019) 34, 2793–2803. https://doi.org/10.1364/JOSAB.36.002793 [NASA ADS] [CrossRef] [Google Scholar]
  19. Hu X. -M., Xing W. -B., Liu B. -H., He D. -Y., Cao H., Guo Y., Zhang C., Zhang H., Huang Y. -F., Li C. -F., Guo G. -C., Efficient distribution of high-dimensional entanglement through 11 km fiber. Optica (2020) 7, 738–743. https://doi.org/10.1364/OPTICA.388773 [CrossRef] [Google Scholar]
  20. Ip E., Milione G., Li M. -J., Cvijetic N., Kanonakis K., Stone J., Peng G., Prieto X., Montero C., Moreno V., Liñares J., SDM transmission of real-time 10GbE traffic using commercial SFP + transceivers over 0.5km elliptical-core few-mode fiber. Opt. Express (2015) 23, 240421. https://doi.org/10.1364/OE.23.017120 [Google Scholar]
  21. Muller A., Herzog T., Huttner B., Tittel W., Zbinden H., Gisin N., “Plug and play” systems for quantum cryptography. Appl. Phys. Lett. (1997) 70, 7793–795. https://doi.org/10.1063/1.118224 [NASA ADS] [CrossRef] [Google Scholar]
  22. Sibson P., Kennard J. E., Stanisic S., Erven C., O’Brien J. L., Thompson M. G., Integrated silicon photonics for high-speed quantum key distribution. Optica (2017) 4, 2172–177. https://doi.org/10.1364/OPTICA.4.000172 [CrossRef] [Google Scholar]
  23. Dynes J. F., Kindness S. J., Tam S. W. -B., Plews A., Sharpe A. W., Lucamarini M., Fröhlich B., Yuan Z. L., Penty R. V., Shields A. J., Quantum key distribution over multicore fiber. Opt. Express (2016) 24, 88081–8087. https://doi.org/10.1364/OE.24.008081 [NASA ADS] [CrossRef] [Google Scholar]
  24. Bacco D., Ding Y., Dalgaard K., Rottwitt K., Oxenløwe L. K., Space division multiplexing chip-to-chip quantum key distribution. Sci. Rep. (2017) 7, 12459. https://doi.org/10.1038/s41598-017-12309-3 [NASA ADS] [CrossRef] [Google Scholar]
  25. Riesen N., Gross S., Love J. D., Sasaki Y., Withford M. J., Monolithic mode-selective few-mode multicore fiber multiplexers. Sci. Rep. (2017) 7, 69711. https://doi.org/10.1038/s41598-017-06561-w [Google Scholar]
  26. Labroille G., Barré N., Pinel O., Denolle B., Lenglé K., Garcia L., Jaffrès L., Jian P., Morizur J. -F., Characterization and applications of spatial mode multiplexers based on multi-plane light conversion. Opt. Fiber Technol. (2017) 35, 93–99. https://doi.org/10.1016/j.yofte.2016.09.005 [NASA ADS] [CrossRef] [Google Scholar]
  27. Liñares J., Nistal M. C., Barral D., Quantization of coupled 1d vector modes in integrated photonic waveguides. New J. Phys. (2008) 10, 6063023. https://doi.org/10.1088/1367-2630/10/6/063023https://doi.org/10.1088/1367-2630/10/6/063023 [CrossRef] [Google Scholar]
  28. Beijersbergen M. W., Allen L., van der Veen H. E. L. O., Woerdman J. P., Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. (1993) 96, 123–132. https://doi.org/10.1016/0030-4018(93)90535-D [NASA ADS] [CrossRef] [Google Scholar]
  29. Balado-Souto D., Liñares J., Prieto-Blanco X., Phase auto-compensating high-dimensional quantum cryptography in elliptical-core few-mode fibres. J. Mod. Opt. (2019) 66, 947–957. https://doi.org/10.1080/09500340.2019.1595198 [NASA ADS] [CrossRef] [Google Scholar]
  30. Hu M., Zhang L., Guo B., Li J., Polarization-based plug-and-play measurement-device-independent quantum key distribution. Opt. Quant. Electron. (2019) 51, 122. https://doi.org/10.1007/s11082-018-1736-1 [CrossRef] [Google Scholar]
  31. Hayashi T., Nakanishi T., Multi-core optical fibers for the next-generation communications. SEI Tech. Rev. (2018) 86, 23–28. [Google Scholar]
  32. Sakamoto T., Mori T., Wada M., Yamamoto T., Yamamoto F., Nakajima K., Strongly-coupled multi-core fiber and its optical characteristics for mimo transmission systems. Opt. Fiber Technol. (2016) 35, 8–18. https://doi.org/10.1016/j.yofte.2016.07.010 [Google Scholar]
  33. Ma X., Razavi M., Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A (2012) 86, 062319. https://doi.org/10.1103/PhysRevA.86.062319 [NASA ADS] [CrossRef] [Google Scholar]
  34. Sun S. -H., Gao M., Li C. -Y., Liang L. -M., Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A (2013) 87, 052329. https://doi.org/10.1103/PhysRevA.87.052329 [NASA ADS] [CrossRef] [Google Scholar]
  35. Liñares J., Prieto-Blanco X., Balado D., Carral G. M., Fully autocompensating high-dimensional quantum cryptography by quantum degenerate four-wave mixing. Phys. Rev. A (2021) 103, 043710. https://doi.org/10.1103/PhysRevA.103.043710 [CrossRef] [Google Scholar]
  36. Zhu L., Liu J., Mo Q., Du C., Wang J., Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber. Opt. Express (2016) 24, 16934. https://doi.org/10.1364/OE.24.016934 [Google Scholar]
  37. Wang Z., Hu X., Lin M., Mo Q., Wen H., Li G., Measurements of polarization crosstalk in a polarization-maintaning few-mode optical fiber. Conf. Lasers Electro-Opt. (2017) 24, 2–70. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.