Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
Article Number 18
Number of page(s) 8
Published online 01 September 2021
  1. Pandhija S, Rai NK, Rai AK, Thakur SN, Contaminant concentration in environmental samples using LIBS and CF-LIBS. Appl. Phys. B. Lasers. Opt. (2010) 98, 1231–241. [NASA ADS] [CrossRef] [Google Scholar]
  2. St-Onge L, Kwong E, Sabsabi M, Vadas EB, St-Onge L, et al.Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy. J. Pharm. Biomed. Anal. (2004) 36, 2277–284. [CrossRef] [Google Scholar]
  3. Bustamante MF, Rinaldi CA, Ferrero JC, Laser induced breakdown spectroscopy characterization of ca in a soil depth profile. Spectrochim. Acta. Part. B. (2002) 57, 2303–309. [NASA ADS] [CrossRef] [Google Scholar]
  4. Maravelaki-Kalaitzaki P, Anglos D, Kilikoglou V, Zafiropulos V, Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy. Spectrochim. Acta. Part. B. (2001) 56, 6887–903. [NASA ADS] [CrossRef] [Google Scholar]
  5. Pandhija S, Rai AK, Laser-induced breakdown spectroscopy: a versatile tool for monitoring traces in materials. Pramana (2008) 70, 3553–563. [Google Scholar]
  6. Gomba JM, D’Angelo C, Bertuccelli D, Bertuccelli G, Spectroscopic characterization of laser-induced breakdown in aluminum-lithium alloy samples for quantitative determination of traces. Spectrochim. Acta. Part. B. (2001) 56, 6695–705. [NASA ADS] [CrossRef] [Google Scholar]
  7. Lee WB, Wu JY, Lee YI, Sneddon J, Recent applications of laser-induced breakdown spectrometry: a review of material approaches. Appl. Spectrosc. Rev. (2004) 39, 127–97. [CrossRef] [Google Scholar]
  8. Li J, Lu J, Lin Z, Gong S, Xie C, Chang L, Yang L, Li P, Effects of experimental parameters on elemental analysis of coal by laserinduced breakdown spectroscopy. Opt. Laser Technol. (2009) 41, 8907–913. [NASA ADS] [CrossRef] [Google Scholar]
  9. Beldjilali S, Borivent D, Mercadier L, Mothe E, Clair G, Hermann J, Evaluation of minor element concentrations in potatoes using laser-induced breakdown spectroscopy. Spectrochim. Acta. Part. B. (2010) 65, 8727–733. [NASA ADS] [CrossRef] [Google Scholar]
  10. Feng J, Wang Z, Li Z, Ni W, Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters. Spectrochim. Acta. Part. B. (2010) 65, 7549–556. [NASA ADS] [CrossRef] [Google Scholar]
  11. Rusak DA, Castle BC, Smith BW, Winefordner JD, Fundamentals and applications of laser-induced breakdown spectroscopy. Crit. Rev. Anal. Chem. (1997) 27, 4257–290. [CrossRef] [Google Scholar]
  12. Sneddon J, Lee Y-I, Novel and recent applications of elemental determination by laser-induced breakdown spectrometry. Anal. Lett. (1999) 32, 112143–2162. [CrossRef] [Google Scholar]
  13. St-Onge L, Kwong E, Sabsabi M, Vadas EB, Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy. Spectrochim. Acta. Part. B. (2002) 57, 71131–1140. [NASA ADS] [CrossRef] [Google Scholar]
  14. Tognoni E, Palleschi V, Corsi M, Cristoforetti G, Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches. Spectrochim. Acta. Part. B. (2002) 57, 71115–1130. [NASA ADS] [CrossRef] [Google Scholar]
  15. Inakollua P, Philipb T, Raic AK, Yueha F-Y, Singh JP, A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods. Spectrochim. Acta. Part. B. (2009) 64, 99–104. [CrossRef] [Google Scholar]
  16. Clegg SM, Sklute E, Dyar MD, Barefield JE, Wiens RC, Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques. Spectrochim. Acta. Part. B. (2009) 64, 179–88. [NASA ADS] [CrossRef] [Google Scholar]
  17. Salle B, Lacour J-L, Mauchien P, Fichet P, Maurice S, Manhès G, Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere. Spectrochim. Acta. Part. B. (2006) 61, 3301–313. [NASA ADS] [CrossRef] [Google Scholar]
  18. Sirven J-B, Bousquet B, Canioni L, Sarger L, Laser-induced breakdown spectroscopy of composite samples: comparison of advanced Chemometrics methods. Anal. Chem. (2006) 78, 51462–1469. [CrossRef] [Google Scholar]
  19. Sokullu E, Palabıyık IM, Onur F, Boyacı IH, Chemometric methods for simultaneous quantification of lactic, malic and fumaric acids. Eng. Life Sci. (2010) 10, 4297–303. [CrossRef] [Google Scholar]
  20. Amador-Hernández J, García-Ayuso LE, Fernandez-Romero JM, Luque de Castro MD, Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry. J. Anal. At. Spectrom. (2000) 15, 6587–593. [CrossRef] [Google Scholar]
  21. Kılıç K, Bas D, Boyacı IH, An easy approach for the selection of optimal neural network structure. J. Food. (2009) 34, 273–81. [Google Scholar]
  22. Yuab K, Ren J, Zhao Y, Principles, developments and applications of laser-induced breakdown spectroscopy in agriculture: a review. Artif. Intel. Agric. (2020) 4, 127–139. [Google Scholar]
  23. Wang Z, Feng J, Li L, Ni W, Li Z, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements. J. Anal. At. Spectrom. (2011) 26, 112289–2299. [CrossRef] [Google Scholar]
  24. Sattmann R, Moench I, Krause H, Noll R, Couris S, Hatziapostolou A, Mavromanolakis A, Fotakis C, Larrauri E, Miguel R, Laser-induced breakdown spectroscopy for polymer identification. Appl. Spectrosc. (1998) 52, 3456–461. [NASA ADS] [CrossRef] [Google Scholar]
  25. Sirven J-B, Bousquet B, Canioni L, Sarger L, Tellier S, Potin-Gantier M, Le Hecho I, Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis. Anal. Bioanal. Chem (2006) 385, 256. [CrossRef] [Google Scholar]
  26. Motto-Ros V, Koujelev AS, Osinski GR, Dudelzak AE, Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks. J Eur Optical Soc (2008) 3, [CrossRef] [Google Scholar]
  27. Elliott P, Stamler J, Nichols R, Dyer AR, Stamler R, Kesteloot H, Marmot M, Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Br. Med. J. (1996) 312, 70411249–1253. [CrossRef] [Google Scholar]
  28. Tuomilehto J, Jousilahti P, Rastenyte D, Moltchanov V, Tanskanen A, Pietinen P, Nissinen A, Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study. Lancet (2001) 357, 9259848–851. [Google Scholar]
  29. FSAI (Food Safety Authority of Ireland)Salt and health: review of the scientific evidence and recommendations for public policy in Ireland (2005) URL Accessed 28.09.2014 [Google Scholar]
  30. Capuano E, Van der Veer G, Verheijen PJJ, Heenan SP, Van de Laak LFJ, Koopmans HBM, Van Ruth SM, Comparison of a sodium-based and a chloride-based approach for the determination of sodium chloride content of processed foods in the Netherlands. J. Food Compos. Anal. (2013) 31, 1129–136. [CrossRef] [Google Scholar]
  31. Smith T, Haider C, Novel method for determination of sodium in foods by thermometric endpoint titrimetry (TET). J. Agric. Chem. Environ. (2014) 3, 1B20–25. [Google Scholar]
  32. Maria Markiewicz K, Xavier Cama M, Maria G, Casado P, Yash D, Raquel Cama M, Patrick C, Carl S, Laser-induced breakdown spectroscopy (LIBS) for food analysis: a review. Trends Food Sci. Technol. (2017) 65, 80–93. [CrossRef] [Google Scholar]
  33. Agrawal R, Kumar R, Rai S, Pathak AK, Rai AK, Rai GK, LIBS: a quality control tool for food supplements. Food Biophysics (2011) 6, 4527–533. [CrossRef] [Google Scholar]
  34. Bilge G, Boyacı IH, Eseller KE, Tamer U, Serhat Çakır, analysis of bakery products by laser-induced breakdown spectroscopy. Food Chem. (2015) 181, 186–190. [CrossRef] [Google Scholar]
  35. Sezer B, Bilge G, Boyaci IH, Capabilities and limitations of LIBS in food analysis. TrAC Trends Anal. Chem. (2017) 97, 345–353. [CrossRef] [Google Scholar]
  36. AACCI (American Association of Cereal Chemists International). (2010). Approved Methods of Analysis. 11th Ed. AACCI: St. Paul. Methods 10–10.03 [Google Scholar]
  37. EPA Method 3051Microwave assisted acid digestion of sediments, sludges, soils and oils (1994) [Google Scholar]
  38. Uysal RS, Boyaci IH, Genis HE, Tamer U, Determination of butter adulteration with margarine using Raman spectroscopy. Food. Chem. (2013) 141, 44397–4403. [CrossRef] [Google Scholar]
  39. Tripathi MM, Eseller KE, Yueh F-Y, Singh JP, Multivariate calibration of spectra obtained by laser induced breakdown spectroscopy of plutonium oxide surrogate residues. Spectrochim. Acta Part B (2009) 64, 11-121212–1218. [NASA ADS] [CrossRef] [Google Scholar]
  40. Lengard V, Kermit M, 3-way and 3-block PLS regressions in consumer preference analysis. Food Qual. Prefer. (2006) 17, 3–4234–242. [CrossRef] [Google Scholar]
  41. Krishnan A, Williams LJ, McIntosh AR, Abdi H, Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage (2011) 56, 2455–475. [CrossRef] [Google Scholar]
  42. Chiang Y-H, Using a combined AHP and PLS path modelling on blog site evaluation in Taiwan. Comput. Hum. Behav. (2013) 29, 41325–1333. [CrossRef] [Google Scholar]
  43. Ortiz MC, Sarabia L, Jurado-Lopez A, Luque de Castro MD, Minimum value assured by a method to determine gold in alloys by using laser-induced breakdown spectroscopy and partial least-squares calibration model. Anal. Chim. Acta. (2004) 515, 1151–157. [CrossRef] [Google Scholar]
  44. Hussain T, Gondal MA, Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis. J. Phys. (2013) 439, 1–12. [NASA ADS] [Google Scholar]
  45. Kuwako A, Uchida Y, Maeda K, Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy. Appl. Opt. (2003) 42, 506052–6056. [NASA ADS] [CrossRef] [Google Scholar]
  46. Lynch EJ, Dal Bello F, Sheehan EM, Cashman KD, Arendt EK, Lynch EJ, et al.Fundamental studies on the reduction of salt on dough and bread characteristics. Food Res. Int. (2009) 42, 7885–891. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.