Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
Article Number 22
Number of page(s) 8
Published online 19 October 2021
  1. Lu P, Lalam N, Badar M, Liu B, Chorpening BT, Buric MP, Ohodnicki PR, Distributed optical fiber sensing: review and perspective. Appl. Phys. Rev. (2019) 6, 4041302. [NASA ADS] [CrossRef] [Google Scholar]
  2. Eickhoff W, Ulrich R, Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett. (1981) 39, 9693–695. [NASA ADS] [CrossRef] [Google Scholar]
  3. Froggatt M, Moore J, High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl. Opt. (1998) 37, 101735–1740. [NASA ADS] [CrossRef] [Google Scholar]
  4. Ding Z, Wang C, Liu K, Jiang J, Yang D, Pan G, Pu Z, Liu T, Distributed optical fiber sensors based on optical frequency domain reflectometry: a review. Sensors. (2018) 18, 41072. [CrossRef] [Google Scholar]
  5. Nakayama J, Iizuka K, Nielsen J, Optical fiber fault locator by the step frequency method. Appl. Opt. (1987) 26, 3440–443. [NASA ADS] [CrossRef] [Google Scholar]
  6. Dolfi DW, Nazarathy M, Newton SA, 5-mm-resolution optical-frequency-domain reflectometry using a coded phase-reversal modulator. Opt. Lett. (1988) 13, 8678–680. [NASA ADS] [CrossRef] [Google Scholar]
  7. Arbel D, Eyal A, Dynamic optical frequency domain reflectometry. Opt. Express (2014) 22, 88823–8830. [NASA ADS] [CrossRef] [Google Scholar]
  8. Sakamaki Y, Yamazaki H, Mizuno T, Goh T, Nasu Y, Hashimoto T, Kamei S, Hattori K, Takahashi H, One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology (2009) 1–2. [Google Scholar]
  9. Hoffman D, Heidrich H, Wenke G, Langenhorst R, Dietrich E, Integrated optics eight-port 90° hybrid on LiNbO3. J. Lightwave Technol. (1989) 7, 5794–798. [NASA ADS] [CrossRef] [Google Scholar]
  10. Faralli S, Meloni G, Gambini F, Klamkin J, Potì L, Contestabile G, A compact silicon coherent receiver without waveguide crossing. IEEE Photonics J. (2015) 7, 41–6. [NASA ADS] [Google Scholar]
  11. Seimetz M, Weinert CM, Options, feasibility and availability of 2×4 90° hybrids for coherent optical systems. J. Lightwave Technol. (2006) 24, 31317–1322. [NASA ADS] [CrossRef] [Google Scholar]
  12. Hartog AH, An introduction to distributed optical fibre sensors (2017) Boca RatonCRC Press [CrossRef] [Google Scholar]
  13. Hodgkinson TG, Harmon RA, Smith DW, Demodulation of optical DPSK using in-phase and quadrature detection. Electron. Lett. (1985) 21, 19867. [NASA ADS] [CrossRef] [Google Scholar]
  14. Rao Y, Wang Z, Wu H, Ran Z, Han B, Recent advances in phase-sensitive optical time domain reflectometry (Ф-OTDR). Photonic Sens. (2021) 11, 11–30. [NASA ADS] [CrossRef] [Google Scholar]
  15. Wang Z, Zhang L, Wang S, Xue N, Peng F, Fan M, Sun W, Qian X, Rao J, Rao Y, Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Opt. Express (2016) 24, 2853–858. [NASA ADS] [CrossRef] [Google Scholar]
  16. Ma F, Song N, Wang X, Wang P, Ma H, Wang Y, Peng X, Yu J, Fiber-optic distributed acoustic sensor utilizing LiNbO3 straight through waveguide phase modulator. Opt. Express (2021) 29, 1015425–15433. [CrossRef] [Google Scholar]
  17. Koyamada Y, Imahama M, Kubota K, Hogari K, Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J. Lightwave Technol. (2009) 27, 91142–1146. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.