Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
Article Number 23
Number of page(s) 28
Published online 16 November 2021
  1. Soskin M. S., Vasnetsov M. V., Wolf E., Singular optics. Progress in Optics (2001) AmsterdamElsevier [Google Scholar]
  2. Desyatnikov A. S., Kivshar Y. S., Torner L., Wolf E., Optical vortices and vortex solitons. Progress in Optics (2005) AmsterdamElsevier [Google Scholar]
  3. Andrews D. L., Structured Light and Its Applications (2008) BurlingtonAcademic Press [Google Scholar]
  4. Dennis M. R., O’Holleran K., Padgett M. J., Wolf E., Singular optics: Optical vortices and polarization singularities. Progress in Optics (2009) AmsterdamElsevier [Google Scholar]
  5. Yao A. M., Padgett M. J., Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. (2011) 3, 2161–204. [NASA ADS] [CrossRef] [Google Scholar]
  6. Ramachandran S., Christensen P., Optical vortices in fibers. Nanophotonics (2013) 2, 455–474. [Google Scholar]
  7. Willner A. E., Huang H., Yan Y., Ren Y., Ahmed N., Xie G., Bao C., Li L., Cao Y., Zhao Z., Wang J., Lavery P. J., Tur M., Ramachandran S., Molisch A. F., Ashrafi N., Ashrafi S., Optical communications using orbital momentum of light. Adv. Opt. Photon. (2015) 7, 66–106. [NASA ADS] [CrossRef] [Google Scholar]
  8. Soskin M. S., Boriskina S. V., Chong Y., Dennis M. R., Desyatnikov A., Singular optics and topological photonics. J. Opt. (2016) 19, 010401. [Google Scholar]
  9. Wang J., Advances in communications using optical vortices. Photon. Res. (2016) 4, 14–28. [Google Scholar]
  10. Shen Y., Wang X., Xie Z., Min C., Fu X., Liu Q., Gong M., Yuan X., Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. (2019) 8, 90. [CrossRef] [Google Scholar]
  11. Malomed B. A., Vortex solitons: old results and new perspectives. Physica D Nonlinear Phenom. (2019) 399, 108–137. [NASA ADS] [CrossRef] [Google Scholar]
  12. Allen L., Padgett M., The Poynting vector in Laguerre - Gaussian beams and the interpretation of their angular momentum density. Opt. Commun. (2000) 184, 67–71. [NASA ADS] [CrossRef] [Google Scholar]
  13. Bekshaev A. Y., Soskin M. S., Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun. (2007) 271, 332–348. [NASA ADS] [CrossRef] [Google Scholar]
  14. K. Y. Bliokh A. Y. B., Soskin M. S., Internal flows and energy circulation in light beams. J. Opt. (2011) 13, 053001. [NASA ADS] [CrossRef] [Google Scholar]
  15. Gilson C. R., Allen L., Cameron R. P., Speirits F. C., Barnett S. M., The azimuthal component of Poynting’s vector and the angular momentum of light. J. Opt. (2015) 17, 125610. [NASA ADS] [CrossRef] [Google Scholar]
  16. Kumar V., Viswanathan N. K., Toplogical structures in the Poynting vector field: an experimental realization. Opt. Lett. (2013) 38, 3886–3889. [NASA ADS] [CrossRef] [Google Scholar]
  17. Gahagan K. T., Swartzlander G. A., Optical vortex trapping of particles. Opt. Lett. (1996) 21, 827–829. [NASA ADS] [CrossRef] [Google Scholar]
  18. Nieminen T., Parkin S., Asavei T., Loke V., Heckenberg N., Rubinsztein - Dunlop H., Andrews E. D. L., Optical vortex trapping and the dynamics of particle rotation. Structured Light and Its Applications (2008) BurlingtonAcademic Press [Google Scholar]
  19. Shvedov V. G., Desyatnikov A. S., Rode A. V., Izbebskaya Y. V., Krolikowski W. Z., Kivshar Y., Optical vortex beams for trapping and transport of particles in air. Appl. Phys. A (2010) 100, 327–331. [NASA ADS] [CrossRef] [Google Scholar]
  20. Liu J., Liu S. -M., Zhu L., Wang A. -D., Chen S., Klitis C., Du C., Mo Q., Sorel M., Yu S. -Y., Cai X. -L., Wang J., Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl. (2018) 7, 171148. [NASA ADS] [Google Scholar]
  21. Anzolin G., Tamburini F., Bianchini A., Umbriaco G., Barbieri C., Optical vortices with starlight. Astron. Instrum. (2008) 488, 1159–1165. [Google Scholar]
  22. Swartzlander G. A., Ford E. L., Abdul - Malik R. S., Close L. M., Peters M. A., Palacios D. M., Wilson D. W., Astronomical demonstration of an optical vortex coronograph. Opt. Express (2008) 16, 10200–10207. [NASA ADS] [CrossRef] [Google Scholar]
  23. Masajada A. P., Masajada J., Lamperska W., Phase recovery with the optical vortex microscope. Meas. Sci. Technol. (2019) 30, 105202. [NASA ADS] [CrossRef] [Google Scholar]
  24. Omatsu T., Miyamoto K., Lee A. J., Wavelength - versatile optical vortex lasers. J. Opt. (2017) 19, 123002. [NASA ADS] [CrossRef] [Google Scholar]
  25. Cheng W., Liu X. L., Polynkin P., Simultaneously spatially and temporally focused femtosecond vortex beams for laser micromachining. JOSA B (2018) 35, 16–19. [Google Scholar]
  26. Desyatnikov A. S., Sukhorukov A. A., Kivshar Y. S., Azimuthons: Spatially modulated vortex solitons. Phys. Rev. Lett. (2005) 95, 203904. [NASA ADS] [CrossRef] [Google Scholar]
  27. Zhang Z., Wei W., Sun G., Zeng X., Fan W., Tang L., Li Y., All - fiber short - pulse vortex laser with adjustable pulse width. Laser Phys. (2020) 30, 055102. [NASA ADS] [CrossRef] [Google Scholar]
  28. Chen R. S., Sun F. L., Yao J. N., Wang J. H., Ming H., Wang A. T., Zhan Q. W., Mode - locked all - fiber laser generating optical vortex pulses with tunable repetition rate. Appl. Phys. Lett. (2018) 112, 261103. [NASA ADS] [CrossRef] [Google Scholar]
  29. Liangwei D., Fangwei Y., Wang H., Suppression of azimuthal instability of ring vortex solitons. New J. Phys. (2009) 11, 073026. [NASA ADS] [CrossRef] [Google Scholar]
  30. Quiroga-Teixeiro M., Michinel H., Stable azimuthal stationary state in quintic nonlinear optical media. JOSA B (1997) 14, 2004–2009. [NASA ADS] [CrossRef] [Google Scholar]
  31. Briedis D., Petersen D. E., Edmundson D., Krolikowski W., Bang O., Ring vortex solitons in nonlocal nonlinear media. Opt. Express (2005) 13, 435–443. [NASA ADS] [CrossRef] [Google Scholar]
  32. Richardson D. J., Fini J. M., Nelson L. E., Space-division multiplexingin optical fibres. Nat. Photon. (2013) 7, 354–362. [NASA ADS] [CrossRef] [Google Scholar]
  33. Krupa K., Tonello A., Shalaby B. M., Fabert M., Barthelemy A., Millot G., Wabnitz S., Couderc V., Spatial beam self-cleaning in multimode fibres. Nat. Photon. (2017) 11, 237–241. [NASA ADS] [CrossRef] [Google Scholar]
  34. Richardson D. J., Filling the Light Pipe. Science (2010) 330, 327–328. [Google Scholar]
  35. Mumtaz S., Essiambre R. -J., Agrawal G. P., Nonlinear propagationin multimode and multicore fibers: generalization of the Manakov equations. J. Light. Technol. (2013) 31, 398–406. [NASA ADS] [CrossRef] [Google Scholar]
  36. Aceves A. B., De Angelis C., Rubenchik A. M., Turitsyn S. K., Multi-dimensional solitons in fiber arrays. Opt. Lett. (1994) 19, 329–331. [NASA ADS] [CrossRef] [Google Scholar]
  37. Sukhorukov, A. P., Yangirova, V. V.: Spatio - temporal vortices: properties, generation and recording. Proc. SPIE 5949 Nonlinear Opt. Appl., 594906 (2005). [Google Scholar]
  38. Jhajj N., Larkin I., Rosenthal E. W., Zahedpour S., Wahlstrand J. K., Milchberg H. M., Spatiotemporal Optical Vortices. Phys. Rev. X (2016) 6, 031037. [NASA ADS] [Google Scholar]
  39. Chong A., Wan C., Chen J., Zhan Q., Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photon. (2020) 14, 350–354. [NASA ADS] [CrossRef] [Google Scholar]
  40. Rubenchik A. M., Tkachenko E. V., Fedoruk M. P., Turitsyn S. K., Power-controlled phase-matching and instability of cw propagation in multicore optical fibers with a central core. Opt. Lett. (2013) 38, 204232–4235. [NASA ADS] [CrossRef] [Google Scholar]
  41. Rubenchik A. M., Chekhovskoy I. S., Fedoruk M. P., Shtyrina O. V., Turitsyn S. K., Nonlinear pulse combining and pulse compression in multi-core fibers. Opt. Lett. (2015) 40, 5721–724. [NASA ADS] [CrossRef] [Google Scholar]
  42. Antikainen A., Agrawal G. P., Supercontinuum generation in seven-core fibers. JOSA B (2019) 32, 2927. [NASA ADS] [CrossRef] [Google Scholar]
  43. Chekhovskoy I. S., Shtyrina O. V., Wabnitz S., Fedoruk M. P., Finding spatiotemporal light bullets in multicore and multimode fibers. Opt. Express (2020) 28, 7917–7928. [Google Scholar]
  44. Chekhovskoy I. S., Rubenchik A. M., Shtyrina O. V., Fedoruk M. P., Turitsyn S. K., Nonlinear combining and compression in multicore fibers. Phys. Rev. A (2016) 94, 043848. [NASA ADS] [CrossRef] [Google Scholar]
  45. Chekhovskoy I. S., Sorokina M. A., Rubenchik A. M., Fedoruk M. P., Turitsyn S. K., On demand spatial beam self-focusing in hexagonal multicore fiber. IEEE Photon. J. (2018) 10, 11–8. [CrossRef] [Google Scholar]
  46. Agrawal G., Nonlinear Fiber Optics (2013) BostonAcademic Press [Google Scholar]
  47. Paasonen V. I., Fedoruk M. P., A compact dissipative scheme for nonlinear Schrodinger equation (in Russian). Comput. Technol. (2011) 16, 68–73. [Google Scholar]
  48. Turitsyn S. K., Bale B. G., Fedoruk M. P., Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. (2012) 521, 135–203. [NASA ADS] [CrossRef] [Google Scholar]
  49. Akhmediev N., Ankiewicz A., Solitons of the Complex Ginzburg - Landau Equation. Spat. Solitons Springer Ser. Opt. Sci. (2001) 82, 311–341. [Google Scholar]
  50. Tiofack C. J. L., Mohamadou A., Kofane T. C., Moubissi A. B., Generation of pulse trains in nonlinear optical fibers through the generalized complex Ginzburg-Landau equation. Phys. Rev. E (2009) 80, 066604. [NASA ADS] [CrossRef] [Google Scholar]
  51. Inc M., Aliyu A. I., Yusuf A., Baleanu D., Optical solitons for complex ginzburg – landau model in nonlinear optics. Optik (2018) 158, 368–375. [NASA ADS] [CrossRef] [Google Scholar]
  52. Martínez A. J., Molina M. I., Turitsyn S. K., Kivshar Y. S., Nonlinear multicore waveguiding structures with balanced gain and loss. Phys. Rev. A (2015) 91, 023822. [CrossRef] [Google Scholar]
  53. Fleischer J. W., Bartal G., Cohen O., Manela O., Segev M., Hudock J., Christodoulides D. N., Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. (2004) 92, 123904. [NASA ADS] [CrossRef] [Google Scholar]
  54. Desyatnikov A. S., Kivshar Y. S., Rotating optical soliton clusters. Phys. Rev. Lett. (2002) 88, 053901. [NASA ADS] [CrossRef] [Google Scholar]
  55. Desyatnikov A. S., Dennis M. R., Ferrando A., All-optical discrete vortex switch. Phys. Rev. A (2011) 83, 063822. [NASA ADS] [CrossRef] [Google Scholar]
  56. Xu Y., Sun J., Frantz J., Shalaev M. I., Walasik W., Pandey A., Myers J. D., Bekele R. Y., Tsukernik A., Sanghera J. S., Litchinitser N. M., Nonlinear metasurface for structured light with tunable orbital angular momentum. Appl. Sci. (2019) 9, 958. [CrossRef] [Google Scholar]
  57. Diebel F., Leykam D., Boguslawski M., Rose P., Denz C., S. D. A., All-optical switching in optically induced nonlinear waveguide couplers. Appl. Phys. Lett. (2014) 9, 261111. [NASA ADS] [CrossRef] [Google Scholar]
  58. Leblond H., Malomed B. A., Mihalache D., Spatiotemporal vortices in optical fiber bundles. Phys. Rev. A (2008) 77, 063804. [CrossRef] [Google Scholar]
  59. Leblond H., Malomed B. A., Mihalache D., Spatiotemporal vortex solitons in hexagonal arrays of waveguides. Phys. Rev. A (2011) 83, 063825. [NASA ADS] [CrossRef] [Google Scholar]
  60. Eilenberger F., Prater K., Minardi S., Geiss R., Röpke U., et al.Observation of discrete, vortex light bullets. Phys. Rev. X (2013) 3, 041031. [Google Scholar]
  61. Pelinovsky D. E., Kevrekidis P. G., Frantzeskakis D. J., Persistence and stability of discrete vortices in nonlinear schrödinger lattices. Physica D Nonlinear Phenom. (2005) 212, 120–53. [NASA ADS] [CrossRef] [Google Scholar]
  62. Kevrekidis P. G., Fantzeskakis D. J., Stabilizing the discrete vortex of topological charge s=2. Phys. Rev. E. (2005) 72, 016606. [NASA ADS] [CrossRef] [Google Scholar]
  63. Neshev D. N., Alexander T. J., Ostrovskaya E. A., Kivshar Y. S., Martin H., Makasyuk I., Chen Z., Observation of vortex-ring discrete solitons in 2d photonic lattices. Phys. Rev. Lett. (2004) 92, 123903. [NASA ADS] [CrossRef] [Google Scholar]
  64. Mezentsev V. K., Musher S. L., Ryzhenkova I. V., Turitsyn S. K., Two-dimensional solitons in discrete systems. JETP Lett. (1994) 60, 11829–835. [NASA ADS] [Google Scholar]
  65. Laedke E. W., Spatschek K. H., Mezentsev V. K., Musher S. L., Ryzhenkova I. V., Turitsyn S. K., Instability of 2-dimensional solitons in discrete-systems. JETP Lett. (1995) 62, 8677–684. [NASA ADS] [Google Scholar]
  66. Kartashov Y., Malomed B., Torner L., Solitons in nonlinear lattices. Rev. Modern Phys. (2011) 83, 247–305. [NASA ADS] [CrossRef] [Google Scholar]
  67. Terhalle B., Richter T., Law K. J. H., Göries D., Rose P., Alexander T. J., Kevrekidis P. G., Desyatnikov A. S., Krolikowski W., Kaiser F., Denz C., Kivshar Y. S., Observation of double-charge discrete vortex solitons in hexagonal photonic lattices. Phys. Rev. A (2009) 79, 043821. [NASA ADS] [CrossRef] [Google Scholar]
  68. Longhi S., Bloch dynamics of light waves in helical optical waveguide arrays. Phys. Rev. B (2007) 76, 195119. [NASA ADS] [CrossRef] [Google Scholar]
  69. Parto M., Lopez-Aviles H., Antonio-Lopez J. E., Khajavikhan M., Amezcua-Correa R., Christodoulides D. N., Observation of twist-induced geometric phases and inhibition of optical tunneling via aharonov-bohm effects. Sci. Adv. (2019) 5, 18135. [NASA ADS] [CrossRef] [Google Scholar]
  70. Parto M., Lopez-Aviles H., Khajavikhan M., Amezcua-Correa R., Christodoulides D. N., Topological aharonov-bohm suppression of optical tunneling in twisted nonlinear multicore fibers. Phys. Rev. A (2017) 96, 043816. [NASA ADS] [CrossRef] [Google Scholar]
  71. Castro-Castro C., Shen Y., Srinivasan G., Aceves A. B., Kevrekidis P. G., Light dynamics in nonlinear trimers and twisted multicore fibers. J. Nonlinear Opt. Phys. Mater. (2016) 25, 041650042. [NASA ADS] [CrossRef] [Google Scholar]
  72. Calum M., Daniele F., Biancalana F., Modulation instability of discrete angular momentum in coupled fiber rings. J. Opt. (2019) 21, 6065504. [CrossRef] [Google Scholar]
  73. Milián C., Kartashov Y. V., Torner L., Robust ultrashort light bullets in strongly twisted waveguide arrays. Phys. Rev. Lett. (2019) 123, 133902. [CrossRef] [Google Scholar]
  74. Kartashov Y. V., Vysloukh V. A., Torner L., Wolf E, Soliton shape and mobility control in optical lattices. Progress in Optics (2009) AmsterdamElsevier [Google Scholar]
  75. Mihalache D., Mazilu D., Lederer F., Malomed B. A., Kartashov Y. V., Crasovan L. -C., Torner L., Stable spatiotemporal solitons in bessel optical lattices. Phys. Rev. Lett. (2005) 95, 023902. [NASA ADS] [CrossRef] [Google Scholar]
  76. Kartashov Y. V., Carretero-González R., Malomed B. A., Vysloukh V. A., Torner L., Multipole-mode solitons in bessel optical lattices. Opt. Express (2005) 13, 2610703–10710. [NASA ADS] [CrossRef] [Google Scholar]
  77. Kartashov Y. V., Vysloukh V. A., Torner L., Stable ring-profile vortex solitons in bessel optical lattices. Phys. Rev. Lett. (2005) 94, 043902. [NASA ADS] [CrossRef] [Google Scholar]
  78. Wang X., Chen Z., Kevrekidis P. G., Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices. Phys. Rev. Lett. (2006) 96, 083904. [NASA ADS] [CrossRef] [Google Scholar]
  79. Dong L., Wang J., Wang H., Yin G., Bessel lattice solitons in competing cubic-quintic nonlinear media. Phys. Rev. A (2009) 79, 013807. [NASA ADS] [CrossRef] [Google Scholar]
  80. Zhang B., Polarization vortex spatial optical solitons in Bessel optical lattices. Phys. Lett. A (2011) 375, 71110–1115. [NASA ADS] [CrossRef] [Google Scholar]
  81. Liang J., Discrete solitons in azimuthally modulated bessel lattices: An introduction to solitons in quasi-periodic structure. J. Sci. China Phys. Mech. Astron (2012) 55, 2018–2023. [NASA ADS] [CrossRef] [Google Scholar]
  82. Alexeyev C. N., Volyar A. V., Yavorsky M. A., Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices. Phys. Rev. A (2009) 80, 063821. [NASA ADS] [CrossRef] [Google Scholar]
  83. Fischer R., Neshev D. N., López-Aguayo S., Desyatnikov A. S., Sukhorukov A. A., Krolikowski W., Kivshar Y. S., Light localization in azimuthally modulated bessel photonic lattices. J. Mater. Sci. Mater. Electron. (2007) 18, 277–283. [CrossRef] [Google Scholar]
  84. Turitsyn S. K., Rubenchik A. M., Fedoruk M. P., Tkachenko E., Coherent propagation and energy transfer in low-dimension nonlinear arrays. Phys. Rev. A (2012) 86, 031804. [NASA ADS] [CrossRef] [Google Scholar]
  85. Hizanidis K., Droulias S., Tsopelas I., Efremidis N. K., Christodoulides D. N., Centrally coupled circular array of optical waveguides: The existence of stable steady-state continuous waves and breathing modes. Phys. Scr. (2004) T107, 513–19. [CrossRef] [Google Scholar]
  86. Hizanidis K., Droulias S., Tsopelas I., Efremdis N. K., Christodoulides D. N., Localized modes in a circular array of coupled nonlinear optical waveguides. Int. J. Bifurcation Chaos (2006) 16, 061739–1752. [NASA ADS] [CrossRef] [Google Scholar]
  87. Hadzievski L., Maluckov A., Rubenchik A., Turitsyn S., Stable optical vortices in nonlinear multicore fibers. Light Sci. Appl. (2015) 4, 314. [Google Scholar]
  88. Radosavljević A., Daničić A., Petrovic J., Maluckov A., Hadzievski L., Coherent light propagation through multicore optical fibers with linearly coupled cores. J. Opt. Soc. Am. B (2015) 32, 122520–2527. [CrossRef] [Google Scholar]
  89. Chan F. Y. M., Lau A. P. T., Tam H. -Y., Mode coupling dynamics and communication strategies for multi-core fiber systems. Opt. Express (2012) 20, 44548–4563. [NASA ADS] [CrossRef] [Google Scholar]
  90. Mendinueta J. M. D., Shinada S., Hirota Y., Furukawa H., Wada N., High-capacity super-channel-enabled multi-core fiber optical switching system for converged inter/intra data center and edge optical networks. IEEE J. Sel. Topics Quantum Electron. (2020) 26, 41–13. [CrossRef] [Google Scholar]
  91. Richardson D. J., Nilsson J., Clarkson W. A., High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B (2010) 27, 1163–92. [Google Scholar]
  92. Klenke A., Müller M., Stark H., Kienel M., Jauregui C., Tünnermann A., Limpert J., Coherent beam combination of ultrafast fiber lasers. IEEE J. Sel. Topics Quantum Electron. (2018) 24, 1–9. [CrossRef] [Google Scholar]
  93. Klenke A., Müller M., Stark H., Stutzki F., Hupel C., Schreiber T., Tünnermann A., Limpert J., Coherently combined 16-channel multicore fiber laser system. Opt. Lett. (2018) 43, 71519–1522. [NASA ADS] [CrossRef] [Google Scholar]
  94. Andrianov A. V., Kalinin N. A., Anashkina E. A., Egorova O. N., Lipatov D. S., Kim A. V., Semjonov S. L., Litvak A. G., Selective excitation and amplification of peak-power-scalable out-of-phase supermode in yb-doped multicore fiber. J. Light. Technol. (2020) 38, 82464–2470. [NASA ADS] [CrossRef] [Google Scholar]
  95. Huo Y., Cheo P. K., King G. G., Fundamental mode operation of a 19-core phase-locked yb-doped fiber amplifier. Opt. Express (2004) 12, 256230–6239. [NASA ADS] [CrossRef] [Google Scholar]
  96. Alexeyev C. N., Volyar A. V., Yavorsky M. A., Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices. Phys. Rev. A (2009) 80, 063821. [NASA ADS] [CrossRef] [Google Scholar]
  97. Bozinovic N., Golowich S., Kristensen P., Ramachandran S., Control of orbital angular momentum of light with optical fibers. Opt. Lett. (2012) 37, 132451–2453. [NASA ADS] [CrossRef] [Google Scholar]
  98. Golshani M., Weimann S., Jafari K., Nezhad M. K., Langari A., Bahrampour A. R., Eichelkraut T., Mahdavi S. M., Szameit A., Impact of loss on the wave dynamics in photonic waveguide lattices. Phys. Rev. Lett. (2014) 113, 123903. [NASA ADS] [CrossRef] [Google Scholar]
  99. Kevrekidis P. G., Frantzeskakis D. J., Stabilizing the discrete vortex of topological charge s=2. Phys. Rev. E (2005) 72, 016606. [NASA ADS] [CrossRef] [Google Scholar]
  100. Neshev D. N., Alexander T. J., Ostrovskaya E. A., Kivshar Y. S., Martin H., Makasyuk I., Chen Z., Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. (2004) 92, 123903. [NASA ADS] [CrossRef] [Google Scholar]
  101. Aceves A. B., Luther G. G., De Angelis C., Rubenchik A. M., Turitsyn S. K., Energy localization in nonlinearfiber arrays: Collapse-effect compresor. Phys. Rev. Lett. (1995) 75, 73–76. [NASA ADS] [CrossRef] [Google Scholar]
  102. Chan F. Y. M. A., Lau P. T., H.-Ya. T., Mode coupling dynamics and communication strategies for multi-core fiber systems. Opt. Express (2012) 20, 4548–4563. [NASA ADS] [CrossRef] [Google Scholar]
  103. Zhu B., Taunay T. F. M., Yan F., Fishteyn M., Monberg E., V. D. F., Seven-core multicore fiber transmissions for passive optical network. Opt. Express (2010) 18, 1111117–11122. [NASA ADS] [CrossRef] [Google Scholar]
  104. Silberberg Y., Collapse of optical pulses. Opt. Lett. (1990) 15, 221282–1284. [NASA ADS] [CrossRef] [Google Scholar]
  105. Minardi S., Eilengerber F., Kartashov Y. K., Szameit A., Ropke U., Kobele J., Schuster K., Bartelt H., Nolte S., Torner L., Lederer F., Tünnermann A., Pertsch T., Three-dimensional light bullets in arrays of waveguides. Phys. Rev. Lett. (2010) 105, 293901. [NASA ADS] [CrossRef] [Google Scholar]
  106. Eilenberger F., Minardi S., Szameit A., Röpke U., Kobelke J., Schuster K., Bartelt H., Nolte S., Torner L., Lederer F., Tünnermann A., Pertsch T., Evolution dynamics of discrete-continuous light bullets. Phys. Rev. A (2011) 84, 013836. [NASA ADS] [CrossRef] [Google Scholar]
  107. Shalaby M., Kermène V., Pagnoux D., Desfarges-Berthelemot A., Barthélémy A., Popp A., Abdou Ahmed M., Voss A., Graf T., 19-cores Yb-fiber laser with mode selection for improved beam brightness. Appl. Phys. B Lasers Opt. (2010) 100, 4859. [NASA ADS] [CrossRef] [Google Scholar]
  108. Eilenberger F., Minardi S., Szameit A., Röpke U., Kobelke J., Schuster K., Bartelt H., Nolte S., Tünnermann A., Th. P., Light bullets in waveguide arrays: spacetime-coupling, spectral symmetry breaking and superluminal decay. Opt. Express (2011) 19, 2323171–23187. [NASA ADS] [CrossRef] [Google Scholar]
  109. Pertsch T., Peschel U., Kobelke J., Schuster K., Bartelt H., Nolte S., Tünnermann A., Lederer F., Nonlinearity and disorder in fiber arrays. Phys. Rev. Lett. (2004) 93, 5053901. [NASA ADS] [CrossRef] [Google Scholar]
  110. Solli D. R., Ropers C., Koonath P., Jalali B., Optical Rogue Waves. Nature (2007) 450, 1054–1057. [CrossRef] [PubMed] [Google Scholar]
  111. Sukhorukov A. A., Kivshar Y. S., Slow-light optical bullets in arrays of nonlinear Bragg-grating waveguides. Phys. Rev. Lett. (2006) 97, 23233901. [NASA ADS] [CrossRef] [Google Scholar]
  112. Lushnikov P. M., Vladimirova N., Nonlinear combining of laser beams. Opt. Lett. (2014) 39, 3429–3432. [CrossRef] [Google Scholar]
  113. Edmundson D. E., Enns R. H., Robust bistable light bullets. Opt. Lett. (1992) 17, 8586–588. [NASA ADS] [CrossRef] [Google Scholar]
  114. Wise F., Trapani P., Spatiotemporal Solitons. Opt. Photon. News (2002) 13, 228–32. [CrossRef] [Google Scholar]
  115. Malomed B. A., Mihalache D., Wise F., Torner L., Spatiotemporal optical solitons. J. Opt. B (2005) 7, 53–72. [Google Scholar]
  116. Laedke E. W., Spatschek K. H., Turitsyn S. K., Stability of discrete solitons and quasicollapse to intrinsically localized modes. Phys. Rev. Lett. (1994) 73, 1055–1059. [Google Scholar]
  117. Laedke E. W., Spatschek K. H., Turitsyn S. K., Mezentsev V. K., Analytic criterion for soliton instability in a nonlinear fiber array. Phys. Rev. E (1995) 52, 5549. [NASA ADS] [CrossRef] [Google Scholar]
  118. Majus D., Tamosauskas G., Grazuleviciute I., Garejev N., Lotti A., Couairon A., Faccio D., Dubietis A., Nature of spatiotemporal light bullets in bulk Kerr media. Phys. Rev. Lett. (2014) 112, 193901. [NASA ADS] [CrossRef] [Google Scholar]
  119. Tran T. X., Duong D. C., Biancalana F., Light bullets in nonlinear waveguide arrays under the influence of dispersion and the Raman effect. Phys. Rev. A (2014) 90, 2023857. [NASA ADS] [CrossRef] [Google Scholar]
  120. Kienel M., Müller M., Demmler S., Rothhardt J., Klenke A., Eidam T., Limpert J., A. T., Coherent beam combination of Yb:YAG single-crystal rod amplifiers. Opt. Lett. (2014) 39, 113278–3281. [CrossRef] [Google Scholar]
  121. Lahini Y., Frumker E., Silberberg Y., Droulias S., Hizanidis K., Morandotti R., Christodoulides D. N., Discrete X-wave formation in nonlinear waveguide arrays. Phys. Rev. Lett. (2007) 98, 2023901. [NASA ADS] [CrossRef] [Google Scholar]
  122. Higham N., The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. (2005) 26, 41179–1193. [Google Scholar]
  123. Andrews D. L., Babiker M., The Angular Momentum of Light (2012) CambridgeCambridge University Press [CrossRef] [Google Scholar]
  124. Allen L., Beijersbergen M. W., Spreeuw R. J. C., Woerdman J. P., Orbital angular momentum of light and the transformation of laguerre - gaussian laser modes. Phys. Rev. A (1992) 45, 8185. [CrossRef] [PubMed] [Google Scholar]
  125. Wang J., Twisted optical communications using orbital angular momentum. Sci. China Phys. Mech. Astron. (2019) 62, 034201. [NASA ADS] [CrossRef] [Google Scholar]
  126. Bozinovic N., Yue Y., Ren Y., Tur M., Kristensen P., Huang H., E. W. A., Ramachandran S., Terabit - scale orbital angular momentum mode division multiplexing in fibers. Science (2013) 340, 1545–1548. [Google Scholar]
  127. Picardi M. F., Bliokh K. Y., Rodriguez - Fortuno F. J., Alpeggiani F., Nori F., Angular momenta, helicity, and other properties of dielectric - fiber and metallic - wire modes. Optica (2018) 5, 1016–1026. [NASA ADS] [CrossRef] [Google Scholar]
  128. Bliokh K. Y., Rodriguez - Fortuno F. J., Nori F., Zayats A. V., Spin - orbit interactions of light. Nat. Photon. (2015) 9, 796–808. [CrossRef] [Google Scholar]
  129. Alexeyev C. N., Alexeyev A. N., Lapin B. P., Yavorsky M. A., Spin - orbit - interactions - induced generation of optical vortices in multihelicoidal fibers. Phys. Rev. A (2013) 88, 063814. [NASA ADS] [CrossRef] [Google Scholar]
  130. Gregg P., Kristensen P., Rubano A., Golowich S., Marrucci L., Ramachandran S., Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing. Nat. Commun. (2019) 10, 4707. [CrossRef] [Google Scholar]
  131. Sharma M., Pradhan P., Ung B., Endlessly mono - radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams. Sci. Rep. (2019) 9, 2488. [NASA ADS] [CrossRef] [Google Scholar]
  132. Prabhakar G., Gregg P., Rishoj L., Kristensen P., Ramachandran S., Octave - wide supercontinuum generation of light - carrying orbital angular momentum. Opt. Express (2019) 27, 11547–11556. [CrossRef] [Google Scholar]
  133. Rottwitt K., Koefoed J. G., Ingerslev K., Kristensen P., Inter - modal raman amplification of oam fiber modes. APL Photon. (2019) 4, 030802. [NASA ADS] [CrossRef] [Google Scholar]
  134. Liu X., Christensen E. N., Rottwitt K., Ramachandran S., Nonlinear four-wave mixing with enhanced diversity and selectivity via spin and orbital angular momentum conservation. APL Photon. (2020) 5, 010802. [NASA ADS] [CrossRef] [Google Scholar]
  135. Mokhun I., Mokhun A., Viktorovskaya J., Singularities of the poynting vector and the structure of optical field. Proc. SPIE (2006) 6254, 625409. [Google Scholar]
  136. Novitsky A. V., Barkovsky L. M., Poynting singularities in optical dynamic systems. Phys. Rev. A (2009) 79, 033821. [NASA ADS] [CrossRef] [Google Scholar]
  137. Berry M. V., Optical currents. J. Opt. A Pure Appl. Opt. (2009) 11, 094001. [NASA ADS] [CrossRef] [Google Scholar]
  138. Nye J. F., Berry M. V., Dislocations in wave trains. Proc. R. Soc. A Math. Phys. Eng. Sci. (1974) 336, 165–190. [Google Scholar]
  139. Basistiy I. V., Soskin M. S., Vasnetsov M. V., Optical wavefront dislocations and their properties. Opt. Commun. (1995) 119, 604–612. [NASA ADS] [CrossRef] [Google Scholar]
  140. Baranova N. B., Mamaev A. V., Pilipetskii N. F., Zel’dovich B. Y., Wave - front dislocations: topological limitations for adaptive systems with phase conjugation. JOSA (1983) 73, 525–528. [NASA ADS] [CrossRef] [Google Scholar]
  141. Basistiy I. V., Bazhenov V. Y., Soskin M. S., Vasnetsov M. V., Optics of light beams with screw dislocations. Opt. Commun. (1993) 103, 422–428. [NASA ADS] [CrossRef] [Google Scholar]
  142. Molina-Terriza, G.: Vortex transformation and vortex dynamics in optical fields. In: Andrews, D. L., Babiker, M. (eds.)The Angular Momentum of Light, pp. 31–50 (2013). [Google Scholar]
  143. Khonina S. N., Kazanskiy N. L., Soifer V. A., Optical vortices in a fiber: Mode division multiplexing and multimode self - imaging. Recent Prog. Opt. Fiber Res. InTech (2012) 15, 327–352. [Google Scholar]
  144. Gregg P., Kristensen P., Ramachandran S., Conservation of orbital angular momentum in air - core optical fibers. Optica (2015) 2, 3267–270. [NASA ADS] [CrossRef] [Google Scholar]
  145. Borda-Hernandez J. A., Serpa-Imbett C. M., Hernandez-Figueroa H. E., Vortex polymer optical fiber with 64 stable oam states. Polymers (2020) 12, 2776. [Google Scholar]
  146. Chen S., Wang J., Theorethical analyses on orbital angular momentum modes in conventional graded - index multimode fibre. Sci. Rep. (2017) 7, 3990. [NASA ADS] [CrossRef] [Google Scholar]
  147. Xi X. M., Wong G. K. L., Frosz M. H., Babic F., Ahmed G., Jiang X., Euser T. G., Russell P. S. J., Orbital - angular - momentum preserving helical bloch modes in twisted photonic crystal fibers. Optica (2014) 1, 165–169. [NASA ADS] [CrossRef] [Google Scholar]
  148. Li H., Ren G., Lian Y., Zhu B., Tang M., Zhao Y., Jian S., Broadband angular momentum transmission using a hollow - core photonic band gap fiber. Opt. Lett. (2016) 41, 3591–3594. [CrossRef] [Google Scholar]
  149. Li H., Ren G., Zhu B., Gao Y., Yin B., Wang J., Jian S., Guiding terahertz orbital angular momentum beams in multimode kagome hollow-core fibers. Opt. Lett. (2017) 42, 179–182. [NASA ADS] [CrossRef] [Google Scholar]
  150. Allen L., Barnett S. M., Padgett M. J., Optical Angular Momentum (2003) BristolInstitute of Physics Publishing [CrossRef] [Google Scholar]
  151. Ndagano B., Bruning R., McLaren M., Duparre M., Forbes A., Fiber propagation of vector modes. Opt. Express (2015) 23, 17330–17336. [CrossRef] [Google Scholar]
  152. Bliokh K. Y., Bekshaev A. Y., Nori F., Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett. (2017) 119, 073901. [CrossRef] [Google Scholar]
  153. Volyar A. V., Fadeeva T. A., Angular momentum of the felds of a few – mode fber: I. a perturbed optical vortex. Tech. Phys. Lett. (1997) 23, 848–851. [NASA ADS] [CrossRef] [Google Scholar]
  154. Pryamikov A. D., Alagashev G. K., Features of light leakage from the negative curvature hollow core fbres. Opt. Eng. (2018) 57, 066106. [CrossRef] [Google Scholar]
  155. Pryamikov A. D., Biriukov A. S., Kosolapov A. F., Plotnichenko V. G., Semjonov S. L., Dianov E. M., Demonstration of a waveguide regime for a silica hollow – core microstructured optical fbre with a negative curvature of the core boundary in the spectral region > 3.5 μm. Opt. Express (2011) 19, 1441–1448. [NASA ADS] [CrossRef] [Google Scholar]
  156. Pryamikov A., Alagashev G., Falkovich G., Turitsyn S., Light transport and vortex - supported wave-guiding in microstructured optical fbres. Sci. Rep. (2020) 10, 2507. [NASA ADS] [CrossRef] [Google Scholar]
  157. Luan F., George A. K., Hedley T. D., Pearce G. J., Bird D. M., Knight J. C., J. R. P. S., All – solid band gap fibres. Opt. Lett. (2004) 29, 2369–2371. [NASA ADS] [CrossRef] [Google Scholar]
  158. Kotlyar V. V., Kovalev A. A., Porfirev A. P., Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl. Opt. (2017) 56, 144095–4104. [NASA ADS] [CrossRef] [Google Scholar]
  159. Chekhovskoy I. S., Paasonen V. I., Shtyrina O. V., Fedoruk M. P., Numerical approaches to simulation ofmulti-core fbers. J. Comput. Phys. (2017) 334, 31–34. [NASA ADS] [CrossRef] [Google Scholar]
  160. Sherman J., Morrison W. J., Adjustment of an inverse matrix corresponding to changes in a given column or a given row of the original matrix. Ann. Math. Stat. (1949) 20, 4621–622. [Google Scholar]
  161. Skiba Y. N., A non-iterative implicit algorithm for the solution of advectiondifusion equation on a sphere. Int. J. Numer. Methods Fluids (2015) 78, 5257–282. [NASA ADS] [CrossRef] [Google Scholar]
  162. Chekhovskoy I. S., Using pade approximation for solving systems of nonlinear schrodinger equations by the split-step fourier method (in russian). Comput. Technol. (2015) 20, 399–108. [Google Scholar]
  163. Taha T. R., Ablowitz M. J., Analytical and numerical aspects of certain nonlinear evolution equations. ii. numerical, nonlinear schrodinger equation. J. Comput. Phys. (1984) 55, 2201–230. [NASA ADS] [Google Scholar]
  164. Moler C., Loan C. V., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. (2003) 45, 13–49. [NASA ADS] [CrossRef] [Google Scholar]
  165. Varga R. S., Matrix Iterative Analysis, 2nd Edition (2002) Berlin HeidelbergSpringer [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.