Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
EOS Annual Meeting (EOSAM) 2020
Article Number 8
Number of page(s) 7
DOI https://doi.org/10.1186/s41476-021-00153-y
Published online 02 June 2021
  1. Kanemitsu Y., Handa T., Photophysics of metal halide perovskites: From materials to devices. Jpn. J. Appl. Phys. (2018) 57, 9090101. https://doi.org/10.7567/JJAP.57.090101https://doi.org/10.7567/jjap.57.090101 [NASA ADS] [CrossRef] [Google Scholar]
  2. Song J., Xu L., Li J., Xue J., Dong Y., Li X., Zeng H., Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. (2016) 28, 244861–4869. https://doi.org/10.1002/adma.201600225https://doi.org/10.1002/adma.201600225 [NASA ADS] [CrossRef] [Google Scholar]
  3. Zhang J., Hodes G., Jin Z., Liu S. F., All-inorganic CsPbX 3 perovskite solar cells: progress and prospects. Angew. Chem. Int. Ed. (2019) 58, 4415596–15618. https://doi.org/10.1002/anie.201901081https://doi.org/10.1002/anie.201901081 [CrossRef] [Google Scholar]
  4. Bruzzi M., Talamonti C., Calisi N., Caporali S., Vinattieri A., First proof-of-principle of inorganic perovskites clinical radiotherapy dosimeters. APL Mater. (2019) 7, 5051101. https://doi.org/10.1063/1.5083810https://doi.org/10.1063/1.5083810 [NASA ADS] [CrossRef] [Google Scholar]
  5. Protesescu L., Yakunin S., Bodnarchuk M. I., Krieg F., Caputo R., Hendon C. H., Yang R. X., Walsh A., Kovalenko M. V., Nanocrystals of cesium lead halide perovskites (CsPbX 3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. (2015) 15, 63692–3696. https://doi.org/10.1021/nl5048779https://doi.org/10.1021/nl5048779 [NASA ADS] [CrossRef] [Google Scholar]
  6. Sebastian, M., Peters, J. A., Stoumpos, C. C., Im, J., Kostina, S. S., Liu, Z., Kanatzidis, M. G., Freeman, A. J., Wessels, B. W.: Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr 3 and CsPbCl 3. Phys. Rev. B. 92(23) (2015). https://doi.org/10.1103/physrevb.92.235210. [Google Scholar]
  7. Kato M., Fujiseki T., Miyadera T., Sugita T., Fujimoto S., Tamakoshi M., Chikamatsu M., Fujiwara H., Universal rules for visible-light absorption in hybrid perovskite materials. J. Appl. Phys. (2017) 121, 11115501. https://doi.org/10.1063/1.4978071https://doi.org/10.1063/1.4978071 [NASA ADS] [CrossRef] [Google Scholar]
  8. Bruzzi M., Gabelloni F., Calisi N., Caporali S., Vinattieri A., Defective states in micro-crystalline CsPbBr 3 and their role on photoconductivity. Nanomaterials (2019) 9, 2177. https://doi.org/10.3390/nano9020177https://doi.org/10.3390/nano9020177 [Google Scholar]
  9. Bruzzi M., Falsini N., Calisi N., Vinattieri A., Electrically active defects in polycrystalline and single crystal metal halide perovskite. Energies (2020) 13, 71643. https://doi.org/10.3390/en13071643https://doi.org/10.3390/en13071643 [CrossRef] [Google Scholar]
  10. Biccari F., Falsini N., Bruzzi M., Gabelloni F., Calisi N., Vinattieri A., Ling F. C., Zhou S., Kuznetsov A., Defects in perovskites for solar cells and LEDs, Chapter 3. Defects in functional materials (2020) SingaporeWorld Scientific Publishing [Google Scholar]
  11. Li X., Cao F., Yu D., Chen J., Sun Z., Shen Y., Zhu Y., Wang L., Wei Y., Wu Y., Zeng H., All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small (2017) 13, 91603996. https://doi.org/10.1002/smll.201603996https://doi.org/10.1002/smll.201603996 [CrossRef] [Google Scholar]
  12. Liang K., Mitzi D. B., Prikas M. T., Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. (1998) 10, 1403–411. https://doi.org/10.1021/cm970568fhttps://doi.org/10.1021/cm970568f [CrossRef] [Google Scholar]
  13. Calisi N., Caporali S., Investigation of open air stability of CsPbBr 3 thin-film growth on different substrates. Appl. Sci. (2020) 10, 217775. https://doi.org/10.3390/app10217775https://doi.org/10.3390/app10217775 [CrossRef] [Google Scholar]
  14. Calisi N., Caporali S., Milanesi A., Innocenti M., Salvietti E., Bardi U., Composition-dependent degradation of hybrid and inorganic lead perovskites in ambient conditions. Top. Catal. (2018) 61, 9-111201–1208. https://doi.org/10.1007/s11244-018-0922-5https://doi.org/10.1007/s11244-018-0922-5 [CrossRef] [Google Scholar]
  15. Wang R., Mujahid M., Duan Y., Wang Z. -K., Xue J., Yang Y., A review of perovskites solar cell stability. Adv. Funct. Mater. (2019) 29, 471808843. https://doi.org/10.1002/adfm.201808843https://doi.org/10.1002/adfm.201808843 [CrossRef] [Google Scholar]
  16. Sim K., Jun T., Bang J., Kamioka H., Kim J., Hiramatsu H., Hosono H., Performance boosting strategy for perovskite light-emitting diodes. Appl. Phys. Rev. (2019) 6, 3031402. https://doi.org/10.1063/1.5098871https://doi.org/10.1063/1.5098871 [NASA ADS] [CrossRef] [Google Scholar]
  17. Borri C., Calisi N., Galvanetto E., Falsini N., Biccari F., Vinattieri A., Cucinotta G., Caporali S., First proof-of-principle of inorganic lead halide perovskites deposition by magnetron-sputtering. Nanomaterials (2019) 10, 160. https://doi.org/10.3390/nano10010060https://doi.org/10.3390/nano10010060 [CrossRef] [Google Scholar]
  18. Falsini N., Calisi N., Roini G., Ristori A., Biccari F., Scardi P., Barri C., Bollani M., Caporali S., Vinattieri A., Large-area nanocrystalline caesium lead chloride thin films: a focus on the exciton recombination dynamics. Nanomaterials (2021) 11, 2434. https://doi.org/10.3390/nano11020434https://doi.org/10.3390/nano11020434 [CrossRef] [Google Scholar]
  19. Gulbiński W., Pauleau Y., Deposition of Thin Films by Sputtering. Chemical physics of thin film deposition processes for micro- and nano-technologies (2002) NetherlandsSpringer [Google Scholar]
  20. Greene J. E., Review article: tracing the recorded history of thin-film sputter deposition: from the 1800s to 2017. J. Vac. Sci. Technol. A Vac. Surf. Films (2017) 35, 505–204. https://doi.org/10.1116/1.4998940https://doi.org/10.1116/1.4998940 [Google Scholar]
  21. Gudmundsson J. T., Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. (2020) 29, 11113001. https://doi.org/10.1088/1361-6595/abb7bdhttps://doi.org/10.1088/1361-6595/abb7bd [Google Scholar]
  22. Bonomi, S., Marongiu, D., Sestu, N., Saba, M., Patrini, M., Bongiovanni, G., Malavasi, L.: Novel physical vapor deposition approach to hybrid perovskites: growth of MAPbI 3 thin films by RF-magnetron sputtering. Sci. Rep. 8(1) (2018). https://doi.org/10.1038/s41598-018-33760-w. [Google Scholar]
  23. Jana A., Mittal M., Singla A., Sapra S., Solvent-free, mechanochemical syntheses of bulk trihalide perovskites and their nanoparticles. Chem. Commun. (2017) 53, 213046–3049. https://doi.org/10.1039/C7CC00666Ghttps://doi.org/10.1039/c7cc00666g [CrossRef] [Google Scholar]
  24. Gabelloni F., Biccari F., Falsini N., Calisi N., Caporali S., Vinattieri A., Long-living nonlinear behavior in CsPbBr 3 carrier recombination dynamics. Nanophotonics (2019) 8, 91447–1455. https://doi.org/10.1515/nanoph-2019-0013https://doi.org/10.1515/nanoph-2019-0013 [Google Scholar]
  25. Stoumpos C. C., Malliakas C. D., Peters J. A., Liu Z., Sebastian M., Im J., Chasapis T. C., Wibowo A. C., Chung D. Y., Freeman A. J., Wessels B. W., Kanatzidis M. G., Crystal growth of the perovskite semiconductor CsPbBr 3: a new material for high-energy radiation detection. Cryst. Growth Des. (2013) 13, 72722–2727. https://doi.org/10.1021/cg400645thttps://doi.org/10.1021/cg400645t [CrossRef] [Google Scholar]
  26. Iwanaga M., Photoacoustic detection of phase transitions at low temperatures in CsPbCl 3 crystals. Phase Transit. (2005) 78, 5377–385. https://doi.org/10.1080/01411590500114732https://doi.org/10.1080/01411590500114732 [NASA ADS] [CrossRef] [Google Scholar]
  27. Li J., Yuan X., Jing P., Li J., Wei M., Hua J., Zhao J., Tian L., Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Adv. (2016) 6, 8278311–78316. https://doi.org/10.1039/C6RA17008Khttps://doi.org/10.1039/c6ra17008k [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.