Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
Article Number 9
Number of page(s) 7
DOI https://doi.org/10.1186/s41476-021-00156-9
Published online 13 June 2021
  1. Ataie V, Temprana E, Liu L, Myslivets E, Kuo BPP, Alic N, Radic S, “Flex-Grid Compatible Ultrawide Frequency Comb Source for 31.8 Tb/S Coherent Transmission of 1520 UDWDM Channels,” the Proceedings of the 2014 Optical Fiber Communication Conference, San Francisco, CA, USA, Postdeadline Paper Th5B.7 (2014) 3–13. [Google Scholar]
  2. Corcoran B, Tan M, Xu X, Boes A, Wu J, Nguyen TG, Chu ST, Little BE, Morandotti R, Mitchell A, Moss DJ, Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. (2020) 11, 12568. https://doi.org/10.1038/s41467-020-16265-x [Google Scholar]
  3. Hu H, Ros FD, Pu M, Ye F, Ingerslev K, da Silva, Nooruzzaman M, Amma Y, Sasaki Y, Mizuno T, Miyamoto Y, Ottaviano L, Semenova E, Guan P, Zibar D, Galili M, Yvind K, Morioka T, Oxenlowe LK, Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photonics (2018) 12, 469–473. https://doi.org/10.1038/s41566-018-0205-5 [NASA ADS] [CrossRef] [Google Scholar]
  4. Rafailov EU, Cataluna MA, Sibbett W, Mode-locked quantum-dot lasers. Nat. Photonics (2007) 1, 7395. https://doi.org/10.1038/nphoton.2007.120 [CrossRef] [Google Scholar]
  5. Zilkie, A.J., Meier, J., Mojahedi, M., Poole, P.J., Barrios, P., Poitras, D., et al.: Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at 1.55 μm. IEEE J. Quantum Electron. 43(11), 982–991 (2007). https://doi.org/10.1109/JQE.2007.904474 [Google Scholar]
  6. Lu ZG, Liu JR, Raymond S, Poole P, Barrios P, Poitras D, 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser. Opt. Express (2008) 16, 1410835–10840. https://doi.org/10.1364/OE.16.010835 [NASA ADS] [CrossRef] [Google Scholar]
  7. Lu ZG, “Quantum-Dot Coherent Comb Lasers for Terabit Optical Networking Systems,” in Proc. SPIE 10921, Integrated Optics: Devices, Materials, and Technologies XXIII, San Francisco, CA, USA, Invited Paper 109210N (2019) [Google Scholar]
  8. Marin P, Pfeifle J, Kemal JN, Wolf S, Vijayan K, Chimot N, Martinez A, Ramdane A, Lelarge F, Freude W, Koos C, “8.32 Tbit/S Coherent Transmission Using a Quantum-Dash Mode-Locked Laser Diode,” the Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO 2016), San Jose, CA, USA, Paper STh1F.1 (2016) 5–10. [Google Scholar]
  9. Liu GC, Lu ZG, Liu JR, Mao YX, Vachon M, Song CY, Poole PJ, “A Passive Mode-Locked Quantum Dot Laser with 10.8 Tbit/S Transmission over 100-Km SSMF,” the Proceeding of Optical Fiber Communications (OFC) 2020, San Diego, CA, USA, W2A.2 (2020) 8–12. [Google Scholar]
  10. Marin-Palomo P, Kemal JN, Trocha P, Wolf S, Merghem K, Lelarge F, Ramdane A, Freude W, Randel S, Koos C, Comb-based WDM transmission at 10 Tbit/s using a DC-driven quantum-dash mode-locked laser diode. Opt. Express (2019) 27, 2231110–31129. https://doi.org/10.1364/OE.27.031110 [CrossRef] [Google Scholar]
  11. Liu GC, Lu ZG, Liu JR, Mao Y, Vachon M, Song C, Barrios P, Poole PJ, Passively mode-locked quantum dash laser with 5.4 Tbit/s PAM-4 transmission capacity. Opt. Express (2020) 28, 44587–4593. https://doi.org/10.1364/OE.386266 [NASA ADS] [CrossRef] [Google Scholar]
  12. Kemal JN, Marin-Palomo P, Panapakkam V, Trocha P, Wolf S, Merghem K, Lelarge F, Ramdane A, Randel S, Freude W, Koos C, Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator. Opt. Express (2019) 27, 2231164–31175. https://doi.org/10.1364/OE.27.031164 [NASA ADS] [CrossRef] [Google Scholar]
  13. Lu ZG, Liu JR, Mao YX, Song CY, Weber J, Poole PJ, “12.032 Tbit/S Coherent Transmission Using an Ultra-Narrow Linewidth Quantum Dot 34.46-GHz C-Band Coherent Comb Laser,” in Proceedings of SPIE Photonics West 2019, San Francisco, CA, USA, Vol. 10947, 109470J (2019) 2–8. [Google Scholar]
  14. Kemal JN, Marin-Palomo P, Merghem K, Aubin G, Lelarge F, Ramdane A, Randel S, Freude W, Koos C, 32QAM WDM transmission at 12 Tbit/s using a quantum-dash mode-locked laser diode (QD-MLLD) with external-cavity feedback. Opt. Express (2020) 28, 1623594–23608. https://doi.org/10.1364/OE.392007 [CrossRef] [Google Scholar]
  15. Lu ZG, Liu JR, Mao YX, Song CY, Weber J, Poitras D, Poole PJ, “2.24 Tbit/S PAM-4 Transmission by an InAs/InP Quantum Dot Mode-Locked Laser,” in Proceedings of SPIE Photonics West 2019, San Francisco, CA, USA, Vol. 10946, 109460A (2019) 2–8. [Google Scholar]
  16. Liu S, Wu X, Jung D, Norman JC, Kennedy M, Tsang HK, Gossard AC, Bowers JE, High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica (2019) 6, 2128–134. https://doi.org/10.1364/OPTICA.6.000128 [CrossRef] [Google Scholar]
  17. Lu ZG, Liu JR, Poole P, Raymond S, Barrios P, Poitras D, Pakulski G, Grant P, Roy-Guay D, An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses. Opt. Express (2009) 17, 1613609–13614. https://doi.org/10.1364/OE.17.013609 [NASA ADS] [CrossRef] [Google Scholar]
  18. Lu ZG, Liu JR, Poole P, Jiao Z, Barrios P, Poitras D, Caballero J, Zhang X, Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers. Opt. Commun. (2011) 284, 92323–2326. https://doi.org/10.1016/j.optcom.2010.11.083 [NASA ADS] [CrossRef] [Google Scholar]
  19. Lu ZG, Liu JR, Song C, Weber J, Mao Y, Chang S, Ding H, Poole P, Barrios P, Poitras D, High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module. Opt. Express (2018) 26, 22160–2167. https://doi.org/10.1364/OE.26.002160 [NASA ADS] [CrossRef] [Google Scholar]
  20. Poole P, Kaminska K, Barrios P, Lu Z, Liu J, Growth of InAs/InP-based quantum dots for 1.55 μm laser applications. J. Cryst. Growth (2009) 311, 61482–1486. https://doi.org/10.1016/j.jcrysgro.2009.01.129 [NASA ADS] [CrossRef] [Google Scholar]
  21. Mao Y, Liu J, Lu Z, Song C, Poole P, Ultra-low timing jitter of quantum dash semiconductor comb lasers with self-injection feedback locking. IEEE J. Sel. Top. Quantum Electron (2019) 25, 61900607. https://doi.org/10.1109/JSTQE.2019.2916840 [Google Scholar]
  22. Lelarge F, Dagens B, Renaudier J, Brenot R, Accard A, van Dijk F, Make D, Le Gouezigou O, Provost J-G, Poingt F, Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm. IEEE J. Sel. Top. Quantum Electron. (2007) 13, 1111–124. https://doi.org/10.1109/JSTQE.2006.887154 [NASA ADS] [CrossRef] [Google Scholar]
  23. Jiao Z, Lu ZG, Liu JR, Poole P, Barrios P, Poitras D, Pakulski G, Caballero J, Zhang X, Linewidth enhancement factor of InAs/InP quantum dot lasers around 1.5 μm. Opt. Commun. (2012) 285, 21–224372–4375. https://doi.org/10.1016/j.optcom.2012.07.002 [NASA ADS] [CrossRef] [Google Scholar]
  24. Newell TC, Bossert DJ, Stintz A, Fuchs B, Malloy KJ, Lester LF, Gain and linewidth enhancement factor in InAs quantum-dot laser diodes. IEEE Photon. Technol. Lett. (1999) 11, 121527–1529. https://doi.org/10.1109/68.806834 [NASA ADS] [CrossRef] [Google Scholar]
  25. Rahim M, Zeb K, Lu ZG, Pakulski G, Liu JR, Poole P, Song C, Barrios P, Jiang W, Zhang X, Monolithic InAs/InP quantum dash dual-wavelength DFB laser with ultra-low noise common cavity modes for millimeter-wave applications. Opt. Express (2019) 27, 2435368–35375. https://doi.org/10.1364/OE.27.035368 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.