Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
Article Number 7
Number of page(s) 5
Published online 20 April 2021
  1. Kuiper JJ, et al.An Ocular Protein Triad Can Classify Four Complex Retinal Diseases. Sci Rep (2017) 7, 41595. [NASA ADS] [CrossRef] [Google Scholar]
  2. Iyer SS, Cheng G, Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. (2012) 32, 123–63. [CrossRef] [Google Scholar]
  3. Spolski R, Leonard WJ, Interleukin-21: a double-edged sword with therapeutic potential. Nat. Rev. Drug Discov. (2014) 13, 5379–395. [CrossRef] [Google Scholar]
  4. Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ, Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol (2018) 14, 5325–336. [Google Scholar]
  5. de Jager W, Prakken BJ, Bijlsma JWJ, Kuis W, Rijkers GT, Improved multiplex immunoassay performance in human plasma and synovial fluid following removal of interfering heterophilic antibodies. J. Immunol. Methods (2005) 300, 1–2124–135. [CrossRef] [Google Scholar]
  6. Smith WE, Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev. (2008) 37, 5955–964. [CrossRef] [Google Scholar]
  7. Pannico, M., et al.: Direct printing of gold nanospheres from colloidal solutions by pyro-electrohydrodynamic jet allows hypersensitive SERS sensing. Appl Surface Sci. 531, (2020) [Google Scholar]
  8. Pelletier CC, Lambert JL, Borchert M, Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration. Appl. Spectrosc. (2005) 59, 81024–1031. [NASA ADS] [CrossRef] [Google Scholar]
  9. Movasaghi Z, Rehman S, Rehman IU, Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. (2007) 42, 5493–541. [NASA ADS] [CrossRef] [Google Scholar]
  10. Li Z, et al.A Plasmonic Staircase Nano-Antenna Device with Strong Electric Field Enhancement for Surface Enhanced Raman Scattering (SERS) Applications. J Phys D: Applied Physics (2012) 45, 30. [Google Scholar]
  11. Marshall S, Cooper JB, Quantitative Raman spectroscopy when the signal-to-noise is below the limit of quantitation due to fluorescence interference: advantages of a moving window sequentially shifted excitation approach. Appl. Spectrosc. (2016) 70, 91489–1501. [NASA ADS] [CrossRef] [Google Scholar]
  12. Grilli S, et al.Active Accumulation of Very Diluted Biomolecules by Nano-Dispensing for Easy Detection below the Femtomolar Range. Nature Commun (2014) 5, 5314. [NASA ADS] [CrossRef] [Google Scholar]
  13. Rega R, et al.Detecting Collagen Molecules at Picogram Level through Electric Field-Induced Accumulation. Sensors (Basel) (2020) 20, 12. [CrossRef] [Google Scholar]
  14. Kupcova Skalnikova H, et al.Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research. Int J Mol Sci (2017) 18, 12. [CrossRef] [Google Scholar]
  15. Xu K, et al.Micro Optical Sensors Based on Avalanching Silicon Light-Emitting Devices Monolithically Integrated on Chips. Optical Materials Express (2019) 9, 10. [Google Scholar]
  16. Xu K, et al.Light Emission from a Poly-Silicon Device with Carrier Injection Engineering. Materials Sci Engineering: B (2018) 231, 28–31. [Google Scholar]
  17. Erckens R, et al.Raman spectroscopy in ophthalmology: from experimental tool to applications in vivo. Lasers Med. Sci. (2001) 16, 4236–252. [CrossRef] [Google Scholar]
  18. Erckens RJ, Jongsma FHM, Wicksted JP, Hendrikse F, March WF, Motamedi M, Drug-induced corneal hydration changes monitoredin vivo by non-invasive confocal Raman spectroscopy. J. Raman Spectrosc. (2001) 32, 9733–737. [NASA ADS] [CrossRef] [Google Scholar]
  19. Elshout M, Erckens RJ, Webers CA, Beckers HJ, Berendschot TT, de Brabander J, Hendrikse F, Schouten JS, Detection of Raman spectra in ocular drugs for potential in vivo application of Raman spectroscopy. J. Ocul. Pharmacol. Ther. (2011) 27, 5445–451. [CrossRef] [Google Scholar]
  20. Kaji Y, et al.Raman Microscopy: a Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea. Cornea (2017) 36, Suppl 1S67–S71. [CrossRef] [Google Scholar]
  21. Paluszkiewicz C, Chaniecki P, Rękas M, Rajchel B, Piergies N, Kwiatek WM, Analysis of human lenses by Raman microspectroscopy. Acta Phys. Pol. A (2016) 129, 2244–246. [NASA ADS] [CrossRef] [Google Scholar]
  22. Lazaro JC, et al.Optimizing the Raman signal for characterizing organic samples: the effect of slit aperture and exposure time. Spectrosc-Int J (2009) 23, 271–80. [CrossRef] [Google Scholar]
  23. Awazu K, Kawazoe H, Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses. J. Appl. Phys. (2003) 94, 106243–6262. [NASA ADS] [CrossRef] [Google Scholar]
  24. Galeener FL, Band limits and the vibrational spectra of tetrahedral glasses. Phys. Rev. B (1979) 19, 84292–4297. [Google Scholar]
  25. Galeener FL, Planar rings in vitreous silica. J. Non-Cryst. Solids (1982) 49, 153–62. [NASA ADS] [CrossRef] [Google Scholar]
  26. Gniadecka M, Wulf HC, Nymark Mortensen N, Faurskov Nielsen O, Christensen DH, Diagnosis of basal cell carcinoma by Raman spectroscopy. J. Raman Spectrosc. (1997) 28, 23125–129.<125::AID-JRS65>3.0.CO;2-# [NASA ADS] [CrossRef] [Google Scholar]
  27. Shetty G, Kendall C, Shepherd N, Stone N, Barr H, Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br. J. Cancer (2006) 94, 101460–1464. [CrossRef] [Google Scholar]
  28. Faolain EO, et al.A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy. Vib. Spectrosc. (2005) 38, 1121–127. [CrossRef] [Google Scholar]
  29. C. David et al., "Raman and IR Spectroscopy of Manganese Superoxide Dismutase, a Pathology Biomarker," Vibrational Spectroscopy 62(50–58 (2012) [Google Scholar]
  30. F. J. H. Douglas A. Skoog, Stanley R. Crouch, Principles of Instrumental Analysis, 7th ed., Cengage Learning (2016) [Google Scholar]
  31. L. M. Levine, "Basic and Clinical Science Course, Section 2: Fundamentals and Principles of Ophthalmology," in Basic and Clinical Science Course, p. 430, American Academy of Ophthalmology (2018–2019) [Google Scholar]
  32. Byrne HJ, Knief P, Keating ME, Bonnier F, Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem. Soc. Rev. (2016) 45, 71865–1878. [CrossRef] [Google Scholar]
  33. Woong Moon S, Kim W, Choi S, Shin JH, Label-free optical detection of age-related and diabetic oxidative damage in human aqueous humors. Microsc. Res. Tech. (2016) 79, 111050–1055. [Google Scholar]
  34. C. J. F. Bertens et al., "Confocal Raman spectroscopy: Evaluation of a non-invasive technique for the detection of topically applied ketorolac tromethamine in vitro and in vivo," Int. J. Pharm. 570(118641 (2019) [Google Scholar]
  35. S. Zhang et al., "in Vitro and in Vivo Datasets of Topically Applied Ketorolac Tromethamine in Aqueous Humor Using Raman Spectroscopy," Data Brief 27(104694 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.