Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
Article Number 6
Number of page(s) 9
Published online 20 April 2021
  1. Tittl A, Leitis A, Liu M, Yesilkoy F, Choi DY, Neshev DN, Yuri SK, Altug H, Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science (2018) 360, 1105–1109. [NASA ADS] [CrossRef] [Google Scholar]
  2. Ishikawa A, Tanaka T, Metamaterial absorbers infrared detection of molecular self-assembled monolayers. Sci. Rep. (2015) 5, 112570. [NASA ADS] [CrossRef] [Google Scholar]
  3. Miwa K, Ebihara H, Fang X, Kubo W, Photo-thermoelectric conversion of plasmonic nanohole array. Appl. Sci. (2020) 10, 82681. [NASA ADS] [CrossRef] [Google Scholar]
  4. Tong JK, Hsu WC, Huang Y, Boriskina SV, Chen G, Thin-film ‘thermal wall’ emitters and absorbers for high-efficiency thermophotovoltaics. Sci. Rep. (2015) 5, 110661. [NASA ADS] [CrossRef] [Google Scholar]
  5. Rephaeli E, Fan S, Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Exp. (2009) 17, 1715145–15159. [NASA ADS] [CrossRef] [Google Scholar]
  6. Wu D, Liu C, Xu Z, Liu Y, Yu L, Chen L, Li R, Ma R, Ye H, The design of ultra-broadband selective near perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. (2018) 139, 104–111. [CrossRef] [Google Scholar]
  7. Amemiya K, Koshikawa H, Imbe M, Yamaki T, Shitomi H, Perfect blackbody sheets from nano-percision microtextured elastomers for light and thermal radiation management. J. Mater. Chem. C (2019) 7, 185418–5425. [CrossRef] [Google Scholar]
  8. Rephaeli E, Raman A, Fan S, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. (2013) 13, 41457–1461. [NASA ADS] [CrossRef] [Google Scholar]
  9. Rustami E, Sasagawa K, Sugie K, Ohta Y, Haruta M, Noda T, Tokuda T, Ohta J, Needle-type image sensor with band-pass composite emission filter and parallel fiber-coupled laser excitation. IEEE Trans. Circuits Syst.-I (2020) 67, 41082–1091. [CrossRef] [Google Scholar]
  10. Okamoto K, Okura K, Wang P, Ryuzaki S, Tamada K, Flexibly tunable surface plasmon resonance by strong mode coupling using a random metal nanohemisphere on mirror. Nanophotonics (2020) 9, 103409–3418. [Google Scholar]
  11. Liang CJ, Huang KY, Hung LT, Su CY, Rapidly fabrication of plasmonic structural color thin films through AAO process in an alkaline solution. Surf. Coat. Technol. (2017) 319, 170–181. [CrossRef] [Google Scholar]
  12. Ellenbogen T, Seo K, Crozer KB, Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. (2012) 12, 21026–1031. [CrossRef] [Google Scholar]
  13. Xu T, Wu YK, Luo X, Guo LJ, Plasmonic nanoresonators for high resolution colour filtering and spectral imaging. Nat. Commun. (2010) 1, 159. [NASA ADS] [CrossRef] [Google Scholar]
  14. Yokogawa S, Burgos S, Atwater HA, Plasmonic color filters for CMOS image sensor applications. Nano Lett. (2012) 12, 84349–4354. [NASA ADS] [CrossRef] [Google Scholar]
  15. Chen Q, Cumming DRS, High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Exp. (2010) 18, 1314056–14062. [NASA ADS] [CrossRef] [Google Scholar]
  16. Mazulquim DB, Lee KJ, Yoon JW, Muniz LV, Borges B-HV, Neto LG, Magnusson R, Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly. Opt. Exp. (2014) 22, 2530843–30851. [NASA ADS] [CrossRef] [Google Scholar]
  17. Tan J, Wu Z, Xu K, Meng Y, Jin G, Wang L, Wang Y, Numerical study an au-ZnO-Al absorber for a color filter with a high quality factor. Plasmonics (2020) 15, 1293–299. [Google Scholar]
  18. Ghobadi A, Hajian H, Soydan MC, Butun B, Ozbay E, Lithography-free planar band-pass reflective color filter using a series connection of cavities. Sci. Rep. (2019) 9, 1220. [NASA ADS] [CrossRef] [Google Scholar]
  19. Li W, Valentine J, Metamaterial perfect absorber based hot electron photodetection. Nano Lett. (2014) 14, 63510–3514. [NASA ADS] [CrossRef] [Google Scholar]
  20. Zhao X, Yang Y, Wang Y, Hao Y, Chen Z, Zhang M, Study of the converter based on photonic crystals filters and quantum dots for solar blind ultraviolet imaging system. Opt. Eng. (2018) 57, 11117106. [NASA ADS] [Google Scholar]
  21. Hennesy J, Jewell AD, Hoenk ME, Nikzad S, Metal-dielectric filters for solar-blind silicon ultraviolet detectors. Appl. Opt. (2015) 54, 113507–3512. [NASA ADS] [CrossRef] [Google Scholar]
  22. Li X, Xu J, Synthesis of CdS QDs with single cubic and hexagonal lattice for blue-light-blocking nanocomposite films with a narrow absorbing transitional band. Mater. Today Commun. (2020) 24, 101108. [CrossRef] [Google Scholar]
  23. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H, Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. (2010) 10, 72342–2348. [NASA ADS] [CrossRef] [Google Scholar]
  24. Ding F, Jin Y, Li B, Cheng H, Mo L, He S, Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photon. Rev. (2014) 8, 6946–953. [NASA ADS] [CrossRef] [Google Scholar]
  25. Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M, High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. (2010) 96, 25251104. [NASA ADS] [CrossRef] [Google Scholar]
  26. Ding F, Yang Y, Deshpande RA, Bozhevolnyi SI, A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics (2018) 7, 61129–1156. [CrossRef] [Google Scholar]
  27. Hu J, Shen M, Li Z, Li X, Liu G, Wang X, Kan C, Li Y, Dual-channel extraordinary ultraviolet transmission through an aluminum nanohole array. Nanotechnology (2017) 28, 21215205. [Google Scholar]
  28. Li WD, Chou SY, Solar-blind deep-UV band filter (250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Opt. Exp. (2010) 18, 2931–937. [NASA ADS] [CrossRef] [Google Scholar]
  29. Jakšić Z, Maksimović M, Sarajlić M, Tanasković D, Surface plasmon-polariton assisted metal-dielectric multilayers as passband filters for ultraviolet range. Acta Physica Polonica A (2007) 112, 953–958. [CrossRef] [Google Scholar]
  30. Mu J, Lin PT, Zhang L, Michel J, Kimerling LC, Jaworski F, Agarwal A, Design and fabrication of a high transmissivity metal-dielectric ultraviolet band-pass filter. Appl. Phys. Lett. (2013) 102, 21213105. [NASA ADS] [CrossRef] [Google Scholar]
  31. Morsy AM, Povinelli ML, Hennessy J, Highly selective ultraviolet aluminum plasmonic filters on silicon. Opt. Exp. (2018) 26, 1822650–22657. [CrossRef] [Google Scholar]
  32. Gao H, Peng W, Cui W, Chu S, Yu L, Yang X, Ultraviolet to near infrared titanium nitride broadband plasmonic absorber. Opt. Mater. (2019) 97, 109377. [CrossRef] [Google Scholar]
  33. Ghobadi A, Hajian H, Butun B, Ozbay E, Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers. ACS Photonics (2018) 5, 114203–4221. [CrossRef] [Google Scholar]
  34. Hajian H, Ghobadi A, Butun B, Ozbay E, Active metamaterial nearly perfect light absorbers: a review. J. Opt. Soc. Am. B (2019) 36, 8F131–F143. [CrossRef] [Google Scholar]
  35. Feng L, Huo P, Liang Y, Xu T, Photonic metamaterial absorbers: morphology engineering and interdisciplinary applications. Adv. Mater. (2020) 32, 1903787. [Google Scholar]
  36. Ng C, Weswmann L, Pachenko E, Song J, Davis TJ, Roberts A, Gómez DE, Plasmonic near-complete optical absorption and its applications. Adv. Opt. Mater. (2018) 7, 141801660. [Google Scholar]
  37. Motogaito A, Morishita Y, Miyake H, Hiramatsu K, Extraordibary optical transmission exhibited by surface plasmon polaritons in a double-layer wire grid polarizer. Plasmonics (2015) 10, 61657–1662. [Google Scholar]
  38. Motogaito A, Nakajima T, Miyake H, Hiramatsu K, Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure. Appl. Phys. A Mater. Sci. Process. (2017) 123, 12729. [NASA ADS] [CrossRef] [Google Scholar]
  39. Motogaito A, Mito S, Miyake H, Hiramatsu K, Detecting high-refractive-index media using surface plasmon sensor with one-dimensional metal diffraction grating. Opt. Photon. J. (2016) 6, 07164–170. [NASA ADS] [CrossRef] [Google Scholar]
  40. Motogaito A, Ito Y, Excitation mechanism of surface plasmon polaritons for surface plasmonsensor with 1D metal grating structure for high refractive index medium. Photon. Sens. (2019) 9, 111–18. [NASA ADS] [CrossRef] [Google Scholar]
  41. Motogaito A, Watanabe A, Wave plate fabrication using surface plasmon polariton in a Ag wire grid structure. Technical digest on the 24th Microoptics Conference (2019) 250–251. [Google Scholar]
  42. Khlopin D, Laux F, Wardley WP, Martin J, Wurtz GA, Plain J, Bonod N, Zayats AV, Dickson W, Gérard D, Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays. J Opt. Soc. Am B (2017) 34, 3691–700. [NASA ADS] [CrossRef] [Google Scholar]
  43. Zhu X, Hossain GMI, George M, Farhang A, Cicek A, Yanik AA, Beyond noble metals: high Q-factor aluminum nanoplasmonics. ACS Photon. (2020) 7, 2416–424. [CrossRef] [Google Scholar]
  44. Gerasimov VS, Ershov AE, Bikbaev RG, Rasskazov IL, Isaev IL, Semina PN, Kostyukov AS, Zakomirnyi VI, Polyutov SP, Karpov SV, Plasmonic lattice Kerker effect in ultraviolet-visible spectral range. Phys. Rev. B (2021) 103, 3035402. [CrossRef] [Google Scholar]
  45. Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW, Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt. Exp. (2009) 17, 42334–2340. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.