Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
EOS Annual Meeting (EOSAM) 2020
Article Number 4
Number of page(s) 13
DOI https://doi.org/10.1186/s41476-021-00149-8
Published online 24 March 2021
  1. Bichra M., Sabitov N., Meinecke T., Sinzinger S., Wavefront sensing by numerical evaluation of diffracted wavefields. Appl. Opt. (2017) 56, 13–22. https://doi.org/10.1364/AO.56.000A13 [NASA ADS] [CrossRef] [Google Scholar]
  2. Bichra M., Meinecke T., Fesser P., Müller L., Hoffmann M., Sinzinger S., Freeform characterization based on nanostructured diffraction gratings. Appl. Opt. (2018) 57, 3808–3816. https://doi.org/10.1364/AO.57.003808 [NASA ADS] [CrossRef] [Google Scholar]
  3. Wüster J., Bourgin Y., Feßer P., Sinzinger S., Saastamoinen K., Nano-structured diffraction gratings as polarizing beam splitters under vertical incidence. Abstracts of the EOS Topical Meeting on Diffractive Optics (2019) JenaEuropean Optical Society (EOS) [Google Scholar]
  4. Wüster, J., Bourgin, Y., Fe βer, P., Si, S., Sinzinger, S.: Nanostrukturierte beugungsgitter als angepasste integrierbare polarisationsstrahlteiler. In: Proceedings of the MikroSystemTechnik Kongress. VDE, pp. 468–471. VDE Verlag, Berlin (2019). [Google Scholar]
  5. Bartelt H., Glaser T., Schröter S., Modelling and characterization of optical high frequency gratings. Optik (2001) 112, 283–288. https://doi.org/10.1078/0030-4026-00055 [NASA ADS] [CrossRef] [Google Scholar]
  6. Clausnitzer T., Kämpfe T., Kley E. -B., Tünnermann A., Tishchenko A., Parriaux O., Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting. Appl. Opt. (2007) 46, 819–826. https://doi.org/10.1364/AO.46.000819 [NASA ADS] [CrossRef] [Google Scholar]
  7. Zheng J., Zhou C., Wang B., Feng J., Beam splitting of low-contrast binary gratings under second Bragg angle incidence. J. Opt. Soc. Am. A (2008) 25, 1075–1083. https://doi.org/10.1364/JOSAA.25.001075 [NASA ADS] [CrossRef] [Google Scholar]
  8. Enger R. C., Case S. K., Optical elements with ultrahigh spatial-frequency surface corrugations. Appl. Opt. (1983) 22, 3220–3228. https://doi.org/10.1364/AO.22.003220 [CrossRef] [Google Scholar]
  9. Stork W., Streibl N., Haidner H., Kipfer P., Artificial distributed-index media fabricated by zero-order gratings. Opt. Lett. (1991) 16, 1921–1923. https://doi.org/10.1364/OL.16.001921 [NASA ADS] [CrossRef] [Google Scholar]
  10. Haidner H., Kipfer P., Storck W., Streibl N., Zero-order gratings used as an artificial distributed index medium. Optik (1992) 89, 107–112. [Google Scholar]
  11. Lalanne P., Lemercier-lalanne D., On the effective medium theory of subwavelength periodic structures. J. Mod. Opt. (1996) 43, 2063–2085. https://doi.org/10.1080/09500349608232871 [NASA ADS] [CrossRef] [Google Scholar]
  12. Lalanne P., Astilean S., Chavel P., Cambril E., Launois H., Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. (1998) 23, 1081–1083. https://doi.org/10.1364/OL.23.001081 [NASA ADS] [CrossRef] [Google Scholar]
  13. Lalanne P., Astilean S., Chavel P., Cambril E., Launois H., Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A (1999) 16, 1143–1156. https://doi.org/10.1364/JOSAA.16.001143 [NASA ADS] [CrossRef] [Google Scholar]
  14. Cescato L. H., Gluch E., Streibl N., Holographic quarterwave plates. Appl. Opt. (1990) 29, 3286–3290. https://doi.org/10.1364/AO.29.003286 [NASA ADS] [CrossRef] [Google Scholar]
  15. Kikuta H., Ohira Y., Iwata K., Achromatic quarter-wave plates using the dispersion of form birefringence. Appl. Opt. (1997) 36, 1566–1572. https://doi.org/10.1364/AO.36.001566 [NASA ADS] [CrossRef] [Google Scholar]
  16. Nordin G., Deguzman P., Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region. Opt. Express (1999) 5, 163–168. https://doi.org/10.1364/OE.5.000163 [NASA ADS] [CrossRef] [Google Scholar]
  17. Stock, C., Siefke, T., Zeitner, U. D., Kley, E. -B.: Nano-optical quarter-wave plates for applications in the visible wavelength regime: fabrication, tolerances and in-situ process control. In: Engineering for a Changing World: Proceedings; 59th Ilmenau Scientific Colloquium, Technische Universität Ilmenau (2017). [Google Scholar]
  18. Päivänranta B., Passilly N., Pietarinen J., Laakkonen P., Kuittinen M., Tervo J., Low-cost fabrication of form-birefringent quarter-wave plates. Opt. Express (2008) 16, 16334–16342. https://doi.org/10.1364/OE.16.016334 [CrossRef] [Google Scholar]
  19. Isano T., Kaneda Y., Iwakami N., Ishizuka K., Suzuki N., Fabrication of half-wave plates with subwavelength structures. Jpn. J. Appl. Phys. (2004) 43, 5294–5296. https://doi.org/10.1143/JJAP.43.5294 [NASA ADS] [CrossRef] [Google Scholar]
  20. Lopez A. G., Craighead H. G., Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating. Opt. Lett. (1998) 23, 1627–1629. https://doi.org/10.1364/OL.23.001627 [NASA ADS] [CrossRef] [Google Scholar]
  21. Tyan R. -C., Salvekar A. A., Chou H. -P., Cheng C. -C., Scherer A., Sun P. -C., Xu F., Fainman Y., Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter. J. Opt. Soc. Am. A (1997) 14, 1627–1636. https://doi.org/10.1364/JOSAA.14.001627 [NASA ADS] [CrossRef] [Google Scholar]
  22. Lalanne P., Hazart J., Chavel P., Cambril E., Launois H., A transmission polarizing beam splitter grating. Opt. Lett. (1999) 1, 215–219. [Google Scholar]
  23. Hasman E., Bomzon Z., Niv A., Biener G., Kleiner V., Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures. Opt. Commun. (2002) 209, 45–54. https://doi.org/10.1016/S0030-4018(02)01598-5 [NASA ADS] [CrossRef] [Google Scholar]
  24. Haidner H., Dias D., Wang L. L., Tschudi T., Binary subwavelength structures/resonance gratings as polarization elements. Pure Appl. Opt. J. Eur. Opt. Soc. A (1998) 7, 1347–1361. https://doi.org/10.1088/0963-9659/7/6/013 [NASA ADS] [CrossRef] [Google Scholar]
  25. Xu F., Tyan R. C., Sun P. C., Fainman Y., Cheng C. C., Scherer A., Form-birefringent computer-generated holograms. Opt. Lett. (1996) 21, 1513–1515. https://doi.org/10.1364/OL.21.001513 [NASA ADS] [CrossRef] [Google Scholar]
  26. Bell J. M., Derrick G. H., McPhedran R. C., Diffraction gratings in the quasi-static limit. Opti. Acta Int. J. Opt. (1982) 29, 1475–1489. https://doi.org/10.1080/713820783 [NASA ADS] [CrossRef] [Google Scholar]
  27. Haidner, H.: Theorie der subwellenlängenstrukturen für diffraktive optische elemente. PhD thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg (1994). http://d-nb.info/941006697. [Google Scholar]
  28. Si S., Dittrich L., Hoffmann M., The NanoTuFe-Fabrication of large area periodic nanopatterns with tunable feature sizes at low cost. Microelectron. Eng. (2017) 180, 71–80. https://doi.org/10.1016/j.mee.2017.06.002 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.