J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
EOS Annual Meeting (EOSAM) 2020
Article Number 3
Number of page(s) 8
Published online 06 March 2021
  1. Kaiser N, Pulker HK, Optical Interference Coatings (2003) BerlinSpringer Verlag [CrossRef] [Google Scholar]
  2. Ristau, D.: Laser-Induced Damage in Optical Materials. CRC Press, Boca Raton, FL (USA), 2015 ISBN: 978-1-4398-7217-8 [Google Scholar]
  3. Langdon B, Patel D, Krous E, Rocca JJ, Menoni CS, Tomasel F, Kholi S, McCurdy PR, Langston P, Ogloza A, Influence of process conditions on the optical properties of HfO2/SiO2 coatings for high-power laser coatings. Proc. SPIE (2007) 6720, 67200X. [NASA ADS] [CrossRef] [Google Scholar]
  4. Rempe G, Thompson RJ, Kimble HJ, Lalezari R, Measurement of ultralow losses in an optical interferometer. Opt. Lett. (1992) 17, 363. [NASA ADS] [CrossRef] [Google Scholar]
  5. Alvisi M, Di Giulio M, Marrone SG, Perrone MR, Protopapa ML, Valentini A, Vasanelli L, HfO2 films with high laser damage threshold. Thin Solid Films (2000) 358, 250. [NASA ADS] [CrossRef] [Google Scholar]
  6. Akhtar SMJ, Ristau D, Ebert J, Welling H, High damage threshold single and double layer antireflection (AR) coating for Nd:YAG Laser: conventional systems. J. Optoelectron. Adv. Mater. (2007) 9, 2391. [Google Scholar]
  7. Stolz CJ, Thomas MD, Griffin AJ, BDS thin film damage competition. Proc. SPIE (2008) 7132, 71320C. [NASA ADS] [Google Scholar]
  8. Miller J, Barsotti L, Vitale S, Fritschel P, Evans M, Sigg D, Prospects for doubling the range of Advanced LIGO. Phys. Rev. D (2015) 91, 062005. [NASA ADS] [CrossRef] [Google Scholar]
  9. Steinlechner J, Development of mirror coatings for gravitational wave detectors. Philos. Trans. R. Soc. A (2018) 376, 0282. [Google Scholar]
  10. Jiang YY, Ludlow AD, Lemke ND, Fox RW, Sherman JA, Ma LS, Oates CW, Making optical atomic clocks more stable with 10-16-level laser stabilization. Nat. Photonics (2011) 5, 158. [NASA ADS] [CrossRef] [Google Scholar]
  11. Harry, G., Bodiya, T., DeSalvo, R.: Optical Coatings and Thermal Noise in Precision Measurement. Cambridge University Press, Cambridge (UK), (2012) ISBN: 9781107003385 [Google Scholar]
  12. Aso Y, Michimura Y, Somiga K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H, Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D (2013) 88, 043007. [NASA ADS] [CrossRef] [Google Scholar]
  13. Cole GD, Zhang W, Martin MJ, Ye J, Aspelmeyer M, Tenfold reduction of Brownian noise in high-reflective optical coatings. Nat. Photonics (2013) 7, 644. [NASA ADS] [CrossRef] [Google Scholar]
  14. Cole GD, Zhang W, Bjork BJ, Follman D, Heu P, Deutsch C, Sonderhouse L, Robinson J, Franz C, Alexandrovski A, Notcutt M, Heckl OH, Ye J, Aspelmeyer M, High performance near and mid-infrared crystalline coatings. Optica (2016) 3, 647. [NASA ADS] [CrossRef] [Google Scholar]
  15. Marchiò M, Flaminio R, Pinard L, Forest D, Deutsch C, Heu P, Follman D, Cole GD, Optical performance of large area crystalline coatings. Opt. Express (2018) 5, 6117. [Google Scholar]
  16. He G, Liu M, Zhu LQ, Chang M, Fang Q, Zhang LD, Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100). Surf. Sci. (2005) 576, 67. [NASA ADS] [CrossRef] [Google Scholar]
  17. Xie Y, Ma Z, Su Y, Liu Y, Liu L, Zhao H, Zhou J, Zhang Z, Li J, Xie E, The influence of mixed phases on optical properties of HfO2 thin films prepared by thermal oxidation. J. Mater. Res. (2011) 26, 50. [NASA ADS] [CrossRef] [Google Scholar]
  18. Rammula R, Aarik J, Mänder H, Ritslaid P, Sammelselg V, Atomic layer deposition of HfO2: effect of structure development on growth rate, morphology and optical properties of thin films. Appl. Surf. Sci. (2010) 257, 1043. [CrossRef] [Google Scholar]
  19. Wei Y, Xu Q, Wang Z, Liu Z, Pan F, Zhang Q, Wang J, Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition. J. Alloys Cmpd. (2018) 738, 1422. [CrossRef] [Google Scholar]
  20. Nie X, Ma F, Ma D, Thermodynamics and kinetic behaviors of thickness-dependent crystallization in high-k thin films deposited by atomic layer deposition. J. Vacuum Sci. Technol. A (2015) 33, 01A140. [NASA ADS] [CrossRef] [Google Scholar]
  21. Biswas D, Singh MN, Sinha AK, Bhattacharyya S, Chakraborty S, Effect of excess hafnium on HfO2 crystallization temperature and leakage current behavior of HfO2/Si metal-oxide semiconductor devices. J. Vacuum Sci. Tecnol. B. (2016) 34, 022201. [NASA ADS] [CrossRef] [Google Scholar]
  22. Kim DH, Park JW, Chang YM, Lim D, Chung H, Electrical properties and structure of laser-spike-annealed hafnium oxide. Thin Solid Films (2010) 518, 2812. [NASA ADS] [CrossRef] [Google Scholar]
  23. Liu H, Jiang Y, Wang L, Li S, Yang X, Jiang C, Liu D, Ji Y, Zhang F, Chen D, Effect of heat tretament on properties of HfO2 film deposited by ion beam sputtering. Opt. Mater. (2017) 73, 95. [NASA ADS] [CrossRef] [Google Scholar]
  24. Abromavicius G, Kicas S, Buzelis R, High temperature annealing effects on spectral, microstructural and laser damage resistance properties of sputtered HfO2 and HfO2-SiO2 mixture-based UV mirrors. Opt. Mater. (2019) 95, 109245. [CrossRef] [Google Scholar]
  25. Avrami M, Kinetics of phase change. I general theory. J. Chem. Phys. (1939) 7, 1103. [NASA ADS] [CrossRef] [Google Scholar]
  26. Gischkat T, Schachtler D, Balogh-Michels Z, Botha R, Mocker A, Eiermann B, Günther S, Influence of ultra-sonic frequency during substrate cleaning on the laser resistance of antireflection coatings. Proc. SPIE 11173, Laser-Induced Damage in Optical Materials (2019) 1117317. [Google Scholar]
  27. ISO 21254-1:2011. International Organization for Standardization, Geneva. Accessed 12 Nov 2018. [Google Scholar]
  28. Jensen L, Mrohs M, Gyamfi M, Mäderbach H, Ristau D, Higher certainty of the laser-induced damage threshold testwith a redistributing data treatment. Rev. Sci. Instrum. (2015) 86, 103106. [CrossRef] [Google Scholar]
  29. Vos M, Grande PL, Venkataalam DK, Nandi SK, Elliman RG, Oxygen self-diffusion in HfO2 studied by electron spectrography. Phys. Rev. Lett. (2014) 112, 175901. [NASA ADS] [CrossRef] [Google Scholar]
  30. Capron N, Migration of oxygen vacancy in HfO2 and across the HfO2/SiO2 interface: a first principle investigation. Appl. Phys. Lett. (2007) 91, 192905. [CrossRef] [Google Scholar]
  31. Shen W, Kumari N, Gibson G, Jeon Y, Henze D, Silverthorn S, Bash C, Kumar S, Effect of annealing on structural changes and oxygen diffusion in amoprhous HfO2 using classical molecular dynamics. J. Appl. Phys. (2018) 123, 085113. [NASA ADS] [CrossRef] [Google Scholar]
  32. Swaroop S, Kilo M, Argirusis C, Borchardt G, Chokshi AH, Lattice and grain boundary diffusion of cations in 3YTZ analyzed using SIMS. Acta Mater. (2005) 53, 4975. [NASA ADS] [CrossRef] [Google Scholar]
  33. González-Romero RL, Meléndez JJ, Gómez-García D, Cumbrera FL, Domínguez-Rodríguez A, Wakai F, Cation diffusion in yttria-zirconia by molecular dynamics. Solid State Ion. (2011) 204-205, 1. [CrossRef] [Google Scholar]
  34. Dong Y, Qi L, Li J, Chen IW, A computational study of yttria-stabilized zirconia: II. Cation diffusion. Acta Mater. (2017) 126, 438. [NASA ADS] [CrossRef] [Google Scholar]
  35. Suárez G, Garrido LB, Aglietti EF, Sintering kinetics of 8Y–cubic zirconia: Cation diffusion coefficient. Mater. Chem. Phys. (2008) 110, 370. [CrossRef] [Google Scholar]
  36. Yao JK, Shao HD, He HB, Fan ZX, Effects of annealing on laser-induced damage threshold of TiO2/SiO2 high reflectors. Appl. Surf. Sci. (2007) 253, 8911–8914. [NASA ADS] [CrossRef] [Google Scholar]
  37. Tan T, Liu Z, Lu H, Liu W, Tian H, Structure and optical properties of HfO2 thin films on silicon after rapid thermal annealing. Opt. Mater. (2010) 32, 432–435. [NASA ADS] [CrossRef] [Google Scholar]
  38. Borzi A, Dolabella S, Szmyt W, Geler-Kremer J, Abel S, Fompeyrine J, Hoffmann P, Neels A, Microstructure analysis of epitaxial BaTiO3 thin films on SrTiO3-buffered Si: Strain and dislocation density quantification using HRXRD methods. Materialia (2020) 14, 100953. [CrossRef] [Google Scholar]
  39. Stevanovic I, Balogh-Michels Z, Bächli A, Wittwer VJ, Südmeyer T, Stuck A, Gischkat T, Influence of the secondary ion beam source on the laser damage mechanism and stress evolution of IBS hafnia layers. Appl. Sci. (2021) 11/1, 189. [NASA ADS] [Google Scholar]
  40. Tateno R, Okada H, Otobe T, Kawase K, Koga JK, Kosuge A, Nagashima K, Sugiyama A, Kashiwagi K, Negative effect of crystallization on the mechanism of laser damage in a HfO2/SiO2 multilayer. J. Appl. Phys. (2012) 112, 123103. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.