Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
Article Number 1
Number of page(s) 13
DOI https://doi.org/10.1186/s41476-020-00143-6
Published online 04 January 2021
  1. Klocek P, Handbook of Infrared Optical Materials (1991) New YorkCRC Press [Google Scholar]
  2. Yin Z, Yi Z, Direct polishing of aluminium mirrors with higher quality and accuracy. Appl. Optics (2015) 54, 7835–7841. https://doi.org/10.1364/AO.54.007835 [NASA ADS] [CrossRef] [Google Scholar]
  3. Delplancke F, Nijenhuis J, de Man H, Andolfato L, Treichel R, Hopman J, Derie F, Star separator system for the dual-field capability (PRIMA) of the VLTI. Proc. SPIE-Int. Soc. Opt. Eng. (2004) 5491, 1528–1535. https://doi.org/10.1117/12.551873 [Google Scholar]
  4. ter Horst R, Tromp N, de Haan M, Navarro R, Venema L, Pragt J, Directly polished lightweight aluminium mirror. Proc. SPIE-Int. Soc. Opt. Eng. (2017) 105660P, 10566. https://doi.org/10.1117/12.2308200 [Google Scholar]
  5. Kinast J, Schlegel R, Kleinbauer K, Steinkopf R, Follert R, Dorn RJ, Lizon JL, Hatzes A, Tünnermann A, Manufacturing of aluminum mirrors for cryogenic applications. Proc. SPIE-Int. Soc. Opt. Eng. (2018) 10706, 107063G. https://doi.org/10.1117/12.2313126 [Google Scholar]
  6. Supranowitz C, Hall C, Dumas P, Hallock B, Improving surface figure and microroughness of IR materials and diamond turned surfaces with magnetorheological finishing (MRF). Proc. SPIE-Int. Soc. Opt. Eng. (2007) 6545, https://doi.org/10.1117/12.719792 [Google Scholar]
  7. Folkman SL, Characterization of electroless nickel plating on aluminum mirrors. Proc. SPIE-Int Soc. Opt. Eng. (2002) 4771, 254–264. https://doi.org/10.1117/12.482167 [Google Scholar]
  8. Bauer J, Frost F, Arnold T, Reactive ion beam figuring of optical aluminium surfaces. J. Phys. D Appl. Phys. (2017) 50, 8https://doi.org/10.1088/1361-6463/50/8/085101 [CrossRef] [Google Scholar]
  9. Bauer J, Frost F, Lehmann A, Ulitschka M, Li Y, Arnold T, Finishing of metal optics by ion beam technologies. Optim. Eng. (2019) 58, 9092612. https://doi.org/10.1117/1.OE.58.9.092612 [NASA ADS] [Google Scholar]
  10. Bauer J, Ulitschka M, Pietag F, Arnold T, Improved ion beam tools for ultraprecision figure correction of curved aluminum mirror surfaces. J. Astron. Telesc. Instrum. Syst. (2018) 4, 4https://doi.org/10.1117/1.JATIS.4.4.046003 [Google Scholar]
  11. Ulitschka M, Bauer J, Frost F, Arnold T, Reactive ion beam etching-based planarization of optical aluminium surfaces. Proc. SPIE-Int. Soc. Opt. Eng. (2019) 11032, 110320D. https://doi.org/10.1117/12.2513670 [Google Scholar]
  12. Bauer, J., Ulitschka, M., Frost, F., Arnold, T.: Figuring of optical aluminium devices by reactive ion beam etching. EPJ Web Conf. 215(6002), (2019). https://doi.org/10.1051/epjconf/201921506002 [Google Scholar]
  13. Nobes MJ, Colligon JS, Carter G, The equilibrium topography of sputtered amorphous solids. J. Mater. Sci. (1969) 4, 730–733. https://doi.org/10.1007/BF02403410 [NASA ADS] [CrossRef] [Google Scholar]
  14. Carter G, Colligon JS, Nobes MJ, The equilibrium topography of sputtered amorphous solids II. J. Mater. Sci. (1971) 6, 115–117. https://doi.org/10.1007/BF00550340 [NASA ADS] [CrossRef] [Google Scholar]
  15. Carter G, Nobes MJ, Whitton JL, The stability of equilibrium surface topography developed by sputtering. J. Mater. Sci. (1978) 13, 2725–2728. https://doi.org/10.1007/BF02402765 [NASA ADS] [CrossRef] [Google Scholar]
  16. Carter G, The physics and applications of ion beam erosion. J. Phys. D Appl. Phys. (2001) 34, R1–R22. https://doi.org/10.1088/0022-3727/34/3/201 [CrossRef] [Google Scholar]
  17. Carter G, Nobes MJ, Katardjiev IV, Sputter polishing of surfaces. Phil. Mag (1992) B 66, 419–425. https://doi.org/10.1080/13642819208207660 [NASA ADS] [CrossRef] [Google Scholar]
  18. Ulitschka, M., Bauer, J., Frost, F., Arnold, T.: Local smoothing of optical aluminium surfaces by reactive ion beam etching. Optim. Eng. under review. 59(3), 035108 (2020). https://doi.org/10.1117/1.OE.59.3.035108 [Google Scholar]
  19. Johnson LF, Ingersoll KA, Kahng D, Planarization of patterned surfaces by ion beam erosion. Appl. Phys. Lett. (1982) 40, 636–638. https://doi.org/10.1063/1.93172 [NASA ADS] [CrossRef] [Google Scholar]
  20. Johnson LF, Ingersoll KA, Ion polishing with the aid of a planarizing film. Appl. Optics (1983) 22, 1165–1167. https://doi.org/10.1364/AO.22.001165 [NASA ADS] [CrossRef] [Google Scholar]
  21. Ulitschka M, Bauer J, Frost F, Arnold T, Ion beam planarization of optical aluminium surfaces. J. Astron. Telesc. Instrum. Syst. (2020) 6, 1https://doi.org/10.1117/1.JATIS.6.1.014001 [CrossRef] [Google Scholar]
  22. Gubbels G, Tegelaers L, Senden R, Melt spun aluminium alloys for moulding optics. Proc. SPIE-Int Soc. Opt. Eng. (2013) 8884, https://doi.org/10.1117/12.2030181 [Google Scholar]
  23. The Scanning Probe Image Processor SPIP™, Image metrology, Denmark, https://www.imagemet.com/products/spip/. Accessed 11 Dec 2019 [Google Scholar]
  24. Thedsakhulwong A, Locharoenrat K, Thowladda W, Nitrogen concentrations on structural and optical properties of aluminum nitride films deposited by reactive RF-magnetron sputtering. Adv. Mat. Res. (2013) 631-632, 186–191. https://doi.org/10.4028/www.scientific.net/AMR.631-632.186 [Google Scholar]
  25. Bennett HE, Porteus JO, Relation between surface roughness and specular reflectance at normal incidence. J. Opt. Soc. Am. (1961) 51, 123–129. https://doi.org/10.1364/JOSA.51.000123 [NASA ADS] [CrossRef] [Google Scholar]
  26. Harvey JE, Thompson AK, Scattering effects from residual optical fabrication errors. Proc. SPIE-Int. Soc. Opt. Eng. (1995) 2576, 155–174. https://doi.org/10.1117/12.215588International Conference on Optical Fabrication and Testing [Google Scholar]
  27. McCune RC, Donlon WT, Plummer HK, Toth L, Kunz FW, Characterization of surface layers produced by ion implantation of nitrogen in bulk aluminium. Thin Solid Films (1989) 168, 263. https://doi.org/10.1016/0040-6090(89)90012-6and references therein [NASA ADS] [CrossRef] [Google Scholar]
  28. Sanghera HK, Sullivan JL, Saied SO, A study of nitrogen implantation in aluminium-a comparison of experimental results and computer simulation. Appl. Surf. Sci. (1999) 141, 1-257–76. https://doi.org/10.1016/S0169-4332(98)00618-7 [NASA ADS] [CrossRef] [Google Scholar]
  29. Möller W, Parascandola S, Telbizova T, Günzel R, Richter E, Surface processes and diffusion mechanisms of ion nitriding of stainless steel and aluminium. Surf. Coat. Technol. (2001) 136, 73–79. https://doi.org/10.1016/S0257-8972(00)01015-X [CrossRef] [Google Scholar]
  30. Netterfield RP, Müller K-H, McKenzie DR, Goonan MJ, Martin PJ, Growth dynamics of aluminum nitride and aluminum oxide thin films synthesized by ion-assisted deposition. Appl. Phys. (1988) 63, 3760–769. https://doi.org/10.1063/1.340068 [NASA ADS] [CrossRef] [Google Scholar]
  31. Taylor JA, Rabalais JW, Reaction of N2+ beams with aluminum surfaces. J. Chem. Phys. (1981) 75, 1735. https://doi.org/10.1063/1.442251 [NASA ADS] [CrossRef] [Google Scholar]
  32. Espinós JP, González-Elipe AR, Mohai M, Bertóti I, Surface chemical effects of low-energy N2+ ion bombardment on single crystalline α-Al2O3. Surf. Interface Anal. (2000) 30, 90–94. https://doi.org/10.1002/1096-9918(200008)30:1<90::AID-SIA796>3.0.CO;2-Q [CrossRef] [Google Scholar]
  33. Yeh C-T, Tuan W-H, Oxidation mechanism of aluminium nitride revisited. J. Adv. Ceram. (2017) 6, 127–32. https://doi.org/10.1007/s40145-016-0213-1 [CrossRef] [Google Scholar]
  34. Dutta I, Mitra S, Oxidation of sintered aluminium nitride at near-ambient temperatures. J. Am. Ceram. Soc. (1992) 75, 113149–3153. https://doi.org/10.1111/j.1151-2916.1992.tb04403.x [CrossRef] [Google Scholar]
  35. Yue R, Wang Y, Wang Y, Chen C, SIMS study on the initial oxidation process of AlN ceramic substrate in the air. Appl. Surf. Sci. (1999) 148, 1-273–78. https://doi.org/10.1016/S0169-4332(99)00128-2 [NASA ADS] [CrossRef] [Google Scholar]
  36. Korbutowicz R, Zakrzewski A, Rac-Rumijowska O, Stafiniak A, Vincze A, Oxidation rates of aluminium nitride thin films: effect of composition of the atmosphere. J. Mater. Sci. Mater. Electron. (2017) 28, 13937–13949. https://doi.org/10.1007/s10854-017-7243-5 [CrossRef] [Google Scholar]
  37. Yamamura Y, Tawara H, Energy dependence of ion-induced sputtering yields from monoatomic solids at normal incidence. At. Data Nucl. Data Tables (1996) 62, 2149–253. https://doi.org/10.1006/adnd.1996.0005 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.