Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 15
Number of page(s) 9
Published online 19 June 2020
  1. Xu Z, Shu X, Fu H, Sensitivity enhanced fiber sensor based on a fiber ring microwave photonic filter with the Vernier effect. Opt. Express (2017) 25, 21559–21566. [Google Scholar]
  2. Huang Q, Yu Y, Ou Z, Chen X, Wang J, Yan P, Du C, Refractive index and strain sensitivities of a long period fiber grating. Photonic Sens. (2014) 4, 92–96. [Google Scholar]
  3. Zhong X, Wang Y, Qu J, Liao C, Liu S, Tang J, Wang Q, Zhao J, Yang K, Li Z, High-sensitivity strain sensor based on inflated long period fiber grating. Opt. Lett. (2014) 39, 5463–5466. [Google Scholar]
  4. Verma R, Gupta BD, Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem. (2015) 166, 568–575. [CrossRef] [Google Scholar]
  5. Minkovich V, Sotsky A, Tapered photonic crystal fibers coated with ultra-thin films for highly sensitive bio-chemical sensing. J. Eur. Opt. Soc. (2019) 15, 11–6. [CrossRef] [Google Scholar]
  6. Shen C, Zhong C, Chu J, Zou X, Jin Y, Wang J, Dong X, Li Y, Wang L, Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers. Opt. Commun. (2013) 287, 31–34. [Google Scholar]
  7. Wang S, Lu P, Mao L, Liu D, Jiang S, Cascaded interferometers structure based on dual-pass Mach-Zehnder interferometer and Sagnac interferometer for dual-parameter sensing. Opt. Express (2015) 23, 674–680. [Google Scholar]
  8. He H, Wang L, Yin L, Asymmetric elliptical-hole dual-core photonic crystal fiber with enhanced pressure sensitivity. Opt. Fiber Technol. (2014) 20, 380–383. [Google Scholar]
  9. Lee B, Review of the present status of optical fiber sensors. Opt. Fiber Technol. (2003) 9, 57–79. [Google Scholar]
  10. Gallego D, Lamela H, High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications. Opt. Lett. (2009) 34, 1807–1809. [Google Scholar]
  11. Homola J, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. (2003) 377, 528–539. [CrossRef] [Google Scholar]
  12. Aray A, Chiavaioli F, Arjmand M, Trono C, Tombelli S, Giannetti A, Cennamo N, Soltanolkotabi M, Zeni L, Baldini F, SPR-based plastic optical fibre biosensor for the detection of Creactive protein in serum. J. Biophotonics (2016) 9, 1077–1084. [CrossRef] [Google Scholar]
  13. Wang M, Yang M, Cheng J, Zhang G, Liao C, Wang D, Fabry-Pérot interferometer sensor fabricated by femtosecond laser for hydrogen sensing. IEEE Photonics Technol. Lett. (2013) 25, 713–716. [NASA ADS] [CrossRef] [Google Scholar]
  14. Vollmer F, Arnold S, Whispering-gallery-mode bio-sensing: label-free detection down to single molecules. Nat. Methods (2008) 5, 591–596. [Google Scholar]
  15. Boleininger A, Lake T, Hami S, Vallance C, Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species. Sensors. (2010) 10, 1765–1781. [Google Scholar]
  16. Wang J, Shen C, Lu Y, Chen D, Zhong C, Chu J, Dong X, Chan C, Liquid Refractive Index Sensor Based on a Polarization-Maintaining Fiber Loop Mirror. IEEE Sens. J. (2013) 13, 1721–1724. [NASA ADS] [CrossRef] [Google Scholar]
  17. Shi J, Su G, Xu D, Wang Y, Zhang H, Fu S, Feng J, Yan C, Xu W, Yao J, Dual-Parameter Sensor Using a Long-Period Grating Concatenated With Polarization Maintaining Fiber in Sagnac Loop. IEEE Sens. J. (2016) 16, 4326–4330. [NASA ADS] [CrossRef] [Google Scholar]
  18. Pavlath GA, Shaw HJ, Birefringence and polarization effects in fiber gyroscopes. Appl. Optics (1982) 21, 1752–1757. [NASA ADS] [CrossRef] [Google Scholar]
  19. Su J, Label-free biological and chemical sensing using whispering gallery mode optical resonators: past, present, and future. Sensors. (2017) 17, 540. [Google Scholar]
  20. Yang R, Bao H, Zhang S, Ni K, Zheng Y, Dong X, Simultaneous Measurement of Tilt Angle and Temperature With Pendulum-Based Fiber Bragg Grating Sensor. IEEE Sens. J. (2015) 15, 6381–6384. [NASA ADS] [CrossRef] [Google Scholar]
  21. Arasu P, Noor ASM, Shabaneh AA, Absorbance properties of gold coated fiber Bragg grating sensor for aqueous ethanol. J. Eur. Opt. Soc. (2014) 9, 14018. [NASA ADS] [CrossRef] [Google Scholar]
  22. Yuan LL, Zhao Y, Sato SY, Development of a low-cost and miniaturized fiber Bragg grating strain sensor system. Jpn. J. Appl. Phys. (2017) 56, [Google Scholar]
  23. Dong B, Hao EJ, Core-offset hollow core photonic bandgap fiber-based intermodal interferometer for strain and temperature measurements. Appl. Optics (2011) 50, 3011–3014. [NASA ADS] [CrossRef] [Google Scholar]
  24. Bock WJ, Chen J, Eftimov T, Urbanczyk W, A photonic crystal fiber sensor for pressure measurements. IEEE T. Instrum. Meas. (2006) 55, 1119–1123. [CrossRef] [Google Scholar]
  25. Qian W, Zhao C, Chan C, Hu L, Li T, Wong W, Zu P, Dong X, Temperature Sensing Based on Ethanol-Filled Photonic Crystal Fiber Modal Interferometer. IEEE Sens. J (2012) 12, 2593–2597. [NASA ADS] [CrossRef] [Google Scholar]
  26. Gong H, Chan CC, Zhang YF, Wong WC, Dong XY, Miniature refractometer based on modal interference in a hollow-core photonic crystal fiber with collapsed splicing. J. Biomed. Opt. (2011) 16, [Google Scholar]
  27. Hu DJ, Lim JL, Jiang M, Wang Y, Luan F, Shum PP, Wei H, Tong W, Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index. Opt. Lett. (2012) 37, 2283–2285. [Google Scholar]
  28. Liou J, Yu C, All-fiber Mach-Zehnder interferometer based on two liquid infiltrations in a photonic crystal fiber. Opt. Express (2015) 23, 6946–6951. [Google Scholar]
  29. Mitsuhiro I, Seki A, Watanabe K, Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. Sens. Actuators B Chem (2005) 106, 363–368. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.